Abstract. Despite its importance, hygroscopicity of mineral dust aerosol remains
highly uncertain. In this work, we investigated water adsorption and
hygroscopicity of different mineral dust samples at 25 ∘C, via
measurement of sample mass at different relative humidity (RH, up to 90 %)
using a vapor sorption analyzer. Mineral dust samples examined (21 in total)
included seven authentic mineral dust samples from different regions in the
world and 14 major minerals contained in mineral dust aerosol. At
90 % RH, the mass ratios of adsorbed water to the dry mineral ranged from
0.0011 to 0.3080, largely depending on the BET surface areas of mineral dust
samples. The fractional surface coverages of adsorbed water were determined
to vary between 1.26 and 8.63 at 90 % RH, and it was found that the
Frenkel–Halsey–Hill (FHH) adsorption isotherm could describe surface
coverages of adsorbed water as a function of RH well, with AFHH and
BFHH parameters in the range of 0.15–4.39 and 1.10–1.91, respectively.
The comprehensive and robust data obtained would largely improve our
knowledge of hygroscopicity of mineral dust aerosol.
Unravelling early Cenozoic basin development in northern Tibetan Plateau remains crucial to understanding continental deformation mechanisms and to assessing models of plateau growth. We target coarse-grained red beds from the Cenozoic basal Lulehe Formation in the Qaidam basin by combining conglomerate clast compositions, paleocurrent determinations, sandstone petrography, heavy mineral analysis and detrital zircon U-Pb geochronology to characterize sediment provenance and the relationship between deformation and deposition. The red beds are dominated by matrix-supported, poorly sorted clastic rocks, implying low compositional and textural maturity and short transport distances. Although most sandstones have high (meta)sedimentary lithic fragment contents and abundant heavy minerals of metamorphic origin (e.g., garnet, epidote and chlorite), spatiotemporal differences in detrital compositions are evident. Detrital zircon grains mainly have Phanerozoic ages (210-280 Ma and 390-480 Ma), but Proterozoic ages (750-1000 Ma, 1700-2000 Ma and 2300-2500 Ma) are also prominent in some samples. Analysed strata display dissimilar (including south-, north-and west-directed) paleocurrent orientations. These results demonstrate that the Cenozoic basal deposits were derived from localized, spatially diverse sources with small drainage networks. We advocate that initial sedimentary filling in the northern Qaidam basin was fed by parent-rocks from the North Qaidam-South Qilian belts and the pre-Cenozoic basement within the Qaidam terrane interior, rather than southern distant Eastern Kunlun regions.Seismic and drilling well stratigraphic data indicate the presence of paleohighs and syn-sedimentary reverse faults and noteworthy diversity in sediment thickness of the Lulehe Formation, revealing that the Qaidam terrane exhibited as several isolated depocenters, rather than a coherent basin, in the early stage of the Cenozoic deposition. We suggest the Cenozoic Qaidam basin to have developed in a contractional deformation regime, which supports models with synchronous deformation throughout most of Tibet shortly after the India-Eurasia collision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.