Signals mediated by the chemokine CXCL12 and its receptor CXCR4 are involved in progression of ovarian cancer by enhancing tumor angiogenesis and immunosuppressive networks that regulate dissemination of peritoneal metastasis and development of cancer initiating cells (CICs). Here, we investigated the antitumor efficacy of a CXCR4 antagonist expressed by oncolytic vaccinia virus (OVV) against an invasive variant of the murine epithelial ovarian cancer cell line ID8-T. This variant harbors a high frequency of CICs that form multilayered spheroid cells and express the hyaluronan receptor CD44 as well as stem cell factor receptor CD117 (c-kit). Using an orthotopic ID8-T tumor model, we observed that intraperitoneal delivery of a CXCR4 antagonist-expressing OVV led to reduced metastatic spread of tumors and improved overall survival over that mediated by oncolysis alone. Inhibition of tumor growth with the armed virus was associated with efficient killing of CICs, reductions in expression of ascitic CXCL12 and VEGF, and decreases in intraperitoneal numbers of endothelial and myeloid cells as well as plasmacytoid dendritic cells (pDCs). These changes, together with reduced recruitment of T regulatory cells, were associated with higher ratios of IFN-γ+/IL-10+ tumor-infiltrating T lymphocytes as well as induction of spontaneous humoral and cellular antitumor responses. Similarly, the CXCR4 antagonist released from virally-infected human CAOV2 ovarian carcinoma cells inhibited peritoneal dissemination of tumors in SCID mice leading to improved tumor-free survival in a xenograft model. Our findings demonstrate that OVV armed with a CXCR4 antagonist represents a potent therapy for ovarian CICs with a broad antitumor repertoire.
Chronic inflammation and inflammatory cytokines have recently been implicated in the development and progression of various types of cancer. In the brain, neuroinflammatory cytokines affect the growth and differentiation of both normal and malignant glial cells, with interleukin 1 (IL-1) shown to be secreted by the majority of glioblastoma cells. Recently, elevated levels of sphingosine kinase 1 (SphK1), but not SphK2, were correlated with a shorter survival prognosis for patients with glioblastoma multiforme. SphK1 is a lipid kinase that produces the pro-growth, anti-apoptotic sphingosine 1-phosphate, which can induce invasion of glioblastoma cells. Here, we show that the expression of IL-1 correlates with the expression of SphK1 in glioblastoma cells, and neutralizing anti-IL-1 antibodies inhibit both the growth and invasion of glioblastoma cells. Furthermore, IL-1 up-regulates SphK1 mRNA levels, protein expression, and activity in both primary human astrocytes and various glioblastoma cell lines; however, it does not affect SphK2 expression. The IL-1-induced SphK1 up-regulation can be blocked by the inhibition of JNK, the overexpression of the dominant-negative c-Jun(TAM67), and the down-regulation of c-Jun expression by small interference RNA. Activation of SphK1 expression by IL-1 occurs on the level of transcription and is mediated via a novel AP-1 element located within the first intron of the sphk1 gene. In summary, our results suggest that SphK1 expression is transcriptionally regulated by IL-1 in glioblastoma cells, and this pathway may be important in regulating survival and invasiveness of glioblastoma cells.
Patients with gliomas expressing high levels of epidermal growth factor receptor (EGFR) and plasminogen activator inhibitor-1 (PAI-1) have a shorter overall survival prognosis. Moreover, EGF enhances PAI-1 expression in glioma cells. Although multiple known signaling cascades are activated by EGF in glioma cells, we show for the first time that EGF enhances expression of PAI-1 via sequential activation of c-Src, protein kinase C delta (PKCdelta), and sphingosine kinase 1 (SphK1), the enzyme that produces sphingosine-1-phosphate. EGF induced rapid phosphorylation of c-Src and PKCdelta and concomitant translocation of PKCdelta as well as SphK1 to the plasma membrane. Down-regulation of PKCdelta abolished EGF-induced SphK1 translocation and up-regulation of PAI-1 by EGF; whereas, down-regulation of PKCalpha had no effect on the EGF-induced PAI-1 activation but enhanced its basal expression. Similarly, inhibition of c-Src activity by PP2 blocked both EGF-induced translocation of SphK1 and PKCdelta to the plasma membrane and up-regulation of PAI-1 expression. Furthermore, SphK1 was indispensable for both EGF-induced c-Jun phosphorylation and PAI-1 expression. Collectively, our results provide a functional link between three critical downstream targets of EGF, c-Src, PKCdelta, and SphK1 that have all been implicated in regulating motility and invasion of glioma cells.
The recently discovered MCPIP1 (monocyte chemoattractant protein-induced protein 1), a multidomain protein encoded by the MCPIP1 (ZC3H12A) gene, has been described as a new differentiation factor, a ribonuclease, and a deubiquitination-supporting factor. However, its role in cancer is poorly recognized. Our recent analysis of microarrays data showed a lack of expression of the MCPIP1 transcript in primary neuroblastoma, the most common extracranial solid tumor in children. Additionally, enforced expression of the MCPIP1 gene in BE(2)-C cells caused a significant decrease in neuroblastoma proliferation and viability. Aim of the present study was to further investigate the role of MCPIP1 in neuroblastoma, using expression DNA microarrays and microRNA microarrays. Transient transfections of BE(2)-C cells were used for overexpression of either wild type of MCPIP1 (MCPIP1-wt) or its RN-ase defective mutant (MCPIP1-ΔPIN). We have analyzed changes of transcriptome and next, we have used qRT-PCR to verify mRNA levels of selected genes responding to MCPIP1 overexpression. Additionally, protein levels were determined for some of the selected genes. The choline transporter, CTL1, encoded by the SLC44A1 gene, was significantly repressed at the specific mRNA and protein levels and most importantly this translated into a decreased choline transport in MCPIP1-overexpressing cells. Then, we have found microRNA-3613-3p as the mostly altered in the pools of cells overexpressing the wild type MCPIP1. Next, we analyzed the predicted targets of the miR-3613-3p and validated them using qRT-PCR and western blot. These results indicate that the expression of miR-3613-3p might be regulated by MCPIP1 by cleavage of its precursor form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.