BackgroundAmyotrophic lateral sclerosis (ALS), a common late-onset neurodegenerative disease, is associated with fronto-temporal dementia (FTD) in 3–10% of patients. A mutation in CHMP2B was recently identified in a Danish pedigree with autosomal dominant FTD. Subsequently, two unrelated patients with familial ALS, one of whom also showed features of FTD, were shown to carry missense mutations in CHMP2B. The initial aim of this study was to determine whether mutations in CHMP2B contribute more broadly to ALS pathogenesis.Methodology/Principal FindingsSequencing of CHMP2B in 433 ALS cases from the North of England identified 4 cases carrying 3 missense mutations, including one novel mutation, p.Thr104Asn, none of which were present in 500 neurologically normal controls. Analysis of clinical and neuropathological data of these 4 cases showed a phenotype consistent with the lower motor neuron predominant (progressive muscular atrophy (PMA)) variant of ALS. Only one had a recognised family history of ALS and none had clinically apparent dementia. Microarray analysis of motor neurons from CHMP2B cases, compared to controls, showed a distinct gene expression signature with significant differential expression predicting disassembly of cell structure; increased calcium concentration in the ER lumen; decrease in the availability of ATP; down-regulation of the classical and p38 MAPK signalling pathways, reduction in autophagy initiation and a global repression of translation. Transfection of mutant CHMP2B into HEK-293 and COS-7 cells resulted in the formation of large cytoplasmic vacuoles, aberrant lysosomal localisation demonstrated by CD63 staining and impairment of autophagy indicated by increased levels of LC3-II protein. These changes were absent in control cells transfected with wild-type CHMP2B.Conclusions/SignificanceWe conclude that in a population drawn from North of England pathogenic CHMP2B mutations are found in approximately 1% of cases of ALS and 10% of those with lower motor neuron predominant ALS.We provide a body of evidence indicating the likely pathogenicity of the reported gene alterations. However, absolute confirmation of pathogenicity requires further evidence, including documentation of familial transmission in ALS pedigrees which might be most fruitfully explored in cases with a LMN predominant phenotype.
AimsAmyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) are two syndromic variants within the motor neurone disease spectrum. As PLS and most ALS cases are sporadic (SALS), this limits the availability of cellular models for investigating pathogenic mechanisms and therapeutic targets. The aim of this study was to use gene expression profiling to evaluate fibroblasts as cellular models for SALS and PLS, to establish whether dysregulated biological processes recapitulate those seen in the central nervous system and to elucidate pathways that distinguish the clinically defined variants of SALS and PLS.MethodsMicroarray analysis was performed on fibroblast RNA and differentially expressed genes identified. Genes in enriched biological pathways were validated by quantitative PCR and functional assays performed to establish the effect of altered RNA levels on the cellular processes.ResultsGene expression profiling demonstrated that whilst there were many differentially expressed genes in common between SALS and PLS fibroblasts, there were many more expressed specifically in the SALS fibroblasts, including those involved in RNA processing and the stress response. Functional analysis of the fibroblasts confirmed a significant decrease in miRNA production and a reduced response to hypoxia in SALS fibroblasts. Furthermore, metabolic gene changes seen in SALS, many of which were also evident in PLS fibroblasts, resulted in dysfunctional cellular respiration.ConclusionsThe data demonstrate that fibroblasts can act as cellular models for ALS and PLS, by establishing the transcriptional changes in known pathogenic pathways that confer subsequent functional effects and potentially highlight targets for therapeutic intervention.
To determine the frequency of and clinicopathologic phenotypes associated with FUS/TLS mutations in a large cohort of amyotrophic lateral sclerosis (ALS) cases from the north of England. Design: Genetic screening project with neuropathologic examination of postmortem tissue in selected cases. The clinical details of selected cases are also presented. Setting: Neurology departments of 2 university teaching hospitals in the north of England. Participants: The 15 exons of FUS/TLS were sequenced in an initial cohort of 42 familial ALS (FALS) and 117 sporadic ALS (SALS) cases. Exons 14 and 15 were subsequently screened in a larger cohort of 431 SALS cases. Regions mutated in ALS cases were also screened in 293 controls. Main Outcome Measure: Evaluation of gene-sequencing chromatographs and detailed histopathologic analysis of the central nervous system. Results: Four heterozygous mutations, 1 of which is novel, were identified in 6 patients with ALS (4 with FALS and 2 with SALS). Two of the substitutions were not found to be present in controls, and neuropathology in these cases revealed neuronal and/or glial cytoplasmic inclusions positive for the FUS/TLS protein. One of these cases is also the first reported SALS case with an FUS/TLS mutation. The other 2 substitutions identified were also identified in control cases. Neuropathology in these cases revealed typical SALS pathology, suggesting that they are likely to represent benign polymorphisms. Conclusions: FUS/TLS mutations represented approximately 5% of FALS cases screened. A FUS/TLS mutation was also identified in a single SALS case. Subsequent screening of this region in a larger cohort of SALS cases, however, did not reveal any additional mutations.
Our objective was to establish the pattern of spread in lower limb-onset ALS (contra-versus ipsilateral) and its contribution to prognosis within a multivariate model. Pattern of spread was established in 109 sporadic ALS patients with lower limb-onset, prospectively recorded in Oxford and Sheffield tertiary clinics from 2001 to 2008. Survival analysis was by univariate KaplanMeier log-rank and multivariate Cox proportional hazards. Variables studied were time to next limb progression, site of next progression, age at symptom onset, gender, diagnostic latency and use of riluzole. Initial progression was either to the contralateral leg (76%) or ipsilateral arm (24%). Factors independently affecting survival were time to next limb progression, age at symptom onset, and diagnostic latency. Time to progression as a prognostic factor was independent of initial direction of spread. In a regression analysis of the deceased, overall survival from symptom onset approximated to two years plus the time interval for initial spread. In conclusion, rate of progression in lower limb-onset ALS is not influenced by whether initial spread is to the contralateral limb or ipsilateral arm. The time interval to this initial spread is a powerful factor in predicting overall survival, and could be used to facilitate decision-making and effective care planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.