Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000-2,500 live births. It has been mapped to a 5-cM region (NS1) [corrected] on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)-a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains-cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity.
Mammalian mitochondria contain about 1100 proteins, nearly 300 of which are uncharacterized. Given the well-established role of mitochondrial defects in human disease, functional characterization of these proteins may shed new light on disease mechanisms. Starting with yeast as a model system, we investigated an uncharacterized but highly conserved mitochondrial protein (named here Sdh5). Both yeast and human Sdh5 interact with the catalytic subunit of the succinate dehydrogenase (SDH) complex, a component of both the electron transport chain and the tricarboxylic acid cycle. Sdh5 is required for SDH-dependent respiration and for Sdh1 flavination (incorporation of the flavin adenine dinucleotide cofactor). Germline loss-of-function mutations in the human SDH5 gene, located on chromosome 11q13.1, segregate with disease in a family with hereditary paraganglioma, a neuroendocrine tumor previously linked to mutations in genes encoding SDH subunits. Thus, a mitochondrial proteomics analysis in yeast has led to the discovery of a human tumor susceptibility gene.
Due to the high genetic heterogeneity of hearing loss, current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants. Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of hearing loss. As one of its major tasks, our Expert Panel has adapted the ACMG/AMP guidelines for the interpretation of sequence variants in hearing loss genes. Here, we provide a comprehensive illustration of the newly specified ACMG/AMP hearing loss rules. Three rules remained unchanged, four rules were removed, and the remaining twenty-one rules were specified. These rules were further validated and refined using a pilot set of 51 variants assessed by curators and expert opinion. Of the 51 variants evaluated in the pilot, 37% (19/51) changed category based upon application of the expert panel specified rules and/or aggregation of evidence across laboratories. These hearing loss-specific ACMG/AMP rules will help standardize variant interpretation, ultimately leading to better care for individuals with hearing loss.
Since 1994, a population-based study of frontotemporal dementia (FTD) in The Netherlands has aimed to ascertain all patients with FTD, and first prevalence estimates based on 74 patients were reported in 1998. Here, we present new prevalence estimates after expansion of our FTD population to 245 patients, with emphasis on the prevalence in the province Zuid-Holland where the main study centre is located. All neurologists and physicians in nursing homes received a yearly postal enquiry about suspected FTD cases. FTD was diagnosed in 245 patients according to the Lund-Manchester criteria, supported by neuroimaging and neuropsychology. tau mutation analysis was performed in a subgroup of 154 patients (63%), and 40 out of 98 patients (41%) who died during follow-up were autopsied during the course of the study. The prevalence of FTD in the province Zuid-Holland was 3.6 per 100,000 at age 50-59 years, 9.4 per 100,000 at age 60-69 years and 3.8 per 100,000 at age 70-79 years. The median age at onset of the 245 patients (51% female) was 58.0 years (range 33-80 years). Dementia in one or more first-degree family members was found in 43% of patients and mutation analysis of the tau gene showed mutations in 34 patients (19 P301L, five L315R, four G272V, four R406W, one Delta K280 and one S320F), all with a positive family history for dementia (14% of the total population, 32% of patients with a positive family history). Pathological findings in the 40 autopsied patients consisted of dementia lacking distinctive histology in 22%, FTD with ubiquitin-positive inclusions in 33%, Pick's disease in 15% and tauopathy in the remaining 30% of patients, with tau mutations identified in more than half of the latter patients. We conclude that the prevalence of FTD in The Netherlands is higher than previously reported, confirming that FTD is more common than was previously thought. The finding of tau mutations in 32% of patients with a positive family history for dementia justifies mutation screening in FTD patients with a positive family history, while tau mutations in non-familiar cases are rare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.