Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor survival1–3. We sequenced 29 SCLC exomes, two genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4±1 protein-changing mutations per million basepairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant mutated genes. In all cases we found evidence for inactivation of TP53 and RB1 and identified recurrent mutations in histone-modifying genes, CREBBP, EP300, and MLL. Furthermore, we observed mutations in PTEN, in SLIT2, and EPHA7, as well as focal amplifications of the FGFR1 tyrosine kinase gene. Finally, we detected many of the alterations found in humans in SCLC tumors from p53/Rb1-deficient mice4. Our study implicates histone modification as a major feature of SCLC, reveals potentially therapeutically tractable genome alterations, and provides a generalizable framework for identification of biologically relevant genes in the context of high mutational background.
Lung cancer remains one of the leading causes for cancer-related death in developed countries. In lung adenocarcinomas, EGFR mutations and EML4-ALK fusions are associated with response to EGFR and ALK inhibition. By contrast, therapeutically exploitable genetic alterations have been lacking in squamous-cell lung cancer. We conducted a systematic search for alterations that are therapeutically amenable and performed high-resolution gene-copy number analyses in a set of 232 lung cancer specimens. We identified frequent and focal FGFR1 amplification in squamous-cell lung cancer (n=155), but not in other lung cancer subtypes, and confirmed its presence in an independent cohort of squamous-cell lung cancer samples employing FISH (22% of cases). Using cell-based screening with the FGFR inhibitor (PD173074) in a large (n=83) panel of lung cancer cell lines, we demonstrated that this compound inhibited growth (p=0.0002) and induced apoptosis (p=0.008) specifically in those lung cancer cells carrying amplified FGFR1. We validated the dependency on FGFR1 of FGFR1-amplified cell lines by knockdown of FGFR1 and by ectopic expression of a resistance allele of FGFR1 (FGFR1V561M), which rescued FGFR1-amplified cells from PD173074-mediated cytotoxicity. Finally we showed that inhibition of FGFR1 with a small molecule led to significant tumor shrinkage in vivo. Focal FGFR1 amplification is common in squamous-cell lung cancer and associated with tumor growth and survival, suggesting that FGFR inhibitors may be a viable therapeutic option in this cohort of patients.
While genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations which drive squamous cell lung cancer. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of squamous cell lung cancers and cell lines. Squamous lung cancer cell lines harboring DDR2 mutations were selectively killed by knock-down of DDR2 by RNAi or by treatment with the multi-targeted kinase inhibitor dasatinib. Tumors established from a DDR2 mutant cell line were sensitive to dasatinib in xenograft models. Expression of mutated DDR2 led to cellular transformation which was blocked by dasatinib. A squamous cell lung cancer patient with a response to dasatinib and erlotinib treatment harbored a DDR2 kinase domain mutation. These data suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib. As dasatinib is already approved for use, these findings could be rapidly translated into clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.