We show that oomycete-derived Nep1 (for necrosis and ethylene-inducing peptide1)-like proteins (NLPs) trigger a comprehensive immune response in Arabidopsis thaliana, comprising posttranslational activation of mitogen-activated protein kinase activity, deposition of callose, production of nitric oxide, reactive oxygen intermediates, ethylene, and the phytoalexin camalexin, as well as cell death. Transcript profiling experiments revealed that NLPs trigger extensive reprogramming of the Arabidopsis transcriptome closely resembling that evoked by bacteria-derived flagellin. NLP-induced cell death is an active, light-dependent process requiring HSP90 but not caspase activity, salicylic acid, jasmonic acid, ethylene, or functional SGT1a/SGT1b. Studies on animal, yeast, moss, and plant cells revealed that sensitivity to NLPs is not a general characteristic of phospholipid bilayer systems but appears to be restricted to dicot plants. NLP-induced cell death does not require an intact plant cell wall, and ectopic expression of NLP in dicot plants resulted in cell death only when the protein was delivered to the apoplast. Our findings strongly suggest that NLP-induced necrosis requires interaction with a target site that is unique to the extracytoplasmic side of dicot plant plasma membranes. We propose that NLPs play dual roles in plant pathogen interactions as toxin-like virulence factors and as triggers of plant innate immune responses.
Many plant pathogens secrete toxins that enhance microbial virulence by killing host cells. Usually, these toxins are produced by particular microbial taxa, such as bacteria or fungi. In contrast, many bacterial, fungal and oomycete species produce necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) that trigger leaf necrosis and immunity-associated responses in various plants. We have determined the crystal structure of an NLP from the phytopathogenic oomycete Pythium aphanidermatum to 1.35Å resolution. The protein fold exhibits structural similarities to cytolytic toxins produced by marine organisms (actinoporins). Computational modeling of the 3-dimensional structure of NLPs from another oomycete, Phytophthora parasitica, and from the phytopathogenic bacterium, Pectobacterium carotovorum, revealed a high extent of fold conservation. Expression of the 2 oomycete NLPs in an nlp-deficient P. carotovorum strain restored bacterial virulence, suggesting that NLPs of prokaryotic and eukaryotic origins are orthologous proteins. NLP mutant protein analyses revealed that identical structural properties were required to cause plasma membrane permeabilization and cytolysis in plant cells, as well as to restore bacterial virulence. In sum, NLPs are conserved virulence factors whose taxonomic distribution is exceptional for microbial phytotoxins, and that contribute to host infection by plasma membrane destruction and cytolysis. We further show that NLP-mediated phytotoxicity and plant defense gene expression share identical fold requirements, suggesting that toxin-mediated interference with host integrity triggers plant immunity-associated responses. Phytotoxin-induced cellular damage-associated activation of plant defenses is reminiscent of microbial toxin-induced inflammasome activation in vertebrates and may thus constitute another conserved element in animal and plant innate immunity.crystal structure ͉ immunity ͉ pathogen ͉ plant immunity ͉ phytotoxin
A revised system of abbreviated names is proposed for xyloglucan‐derived oligosaccharides. Each (1→4)‐linked β‐d‐glucosyl residue (and the reducing terminal d‐glucose moiety) of the backbone is given a one‐letter code according to its substituents. The name of the oligosaccharide consists of these code letters listed in sequence from non‐reducing to reducing terminus of the backbone.
Carrot (Daucus carota L.) cells respond to treatment with fungal elicitors by synthesizing wallbound p-hydroxybenzoic acid (p-HBA). The biosynthetic pathway to p-HBA is still hypothetical. Tracer experiments with L-phenylalanine indicate the involvement of the general phenylpropanoid pathway. 3,4 (Methylenedioxy) innamic acid, an inhibitor of hydrocycinnamate CoA ligase, inhibits the accumulation of anthocyanins in carrot, while it does not interfere with p-HBA synthesis. Thus p-HBA biosynthesis does not appear to involve CoA thioesters. In the present report the sequence of enzymic reactions leading to p-HBA was investigated in vitro using protein preparations from cells treated with a fungal elicitor from Pythium aphanidermatum (Edson) Fitzp. The side-chain degradation from p-coumaric acid to p-HBA is not analogous to the β-oxidation of fatty acids and involves p-hydroxybenzaldehyde as an intermediate. The final step from p-hydroxybenzaldehyde to p-HBA is catalyzed by an NAD-dependent p-hydroxybenzaldehyde dehydrogenase (EC 1.2.1.-). This reaction was characterized with regard to cofactor requirements, pH and temperature optima. The in-vitro formation of p-HBA from p-coumaric acid and the activity of the hydroxybenzaldehyde dehydrogenase are moderately elicitor-induced but to a much lesser extent than phenylalanine ammonialyase, which is the starting enzyme of the general phenylpropanoid pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.