Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence-absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter-or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solv...
Key global indicators of biodiversity decline, such as the IUCN Red List Index and the Living Planet Index, have relatively long assessment intervals. This means they, due to their inherent structure, function as late-warning indicators that are retrospective, rather than prospective. These indicators are unquestionably important in providing information for biodiversity conservation, but the detection of early-warning signs of critical biodiversity change is also needed so that proactive management responses can be enacted promptly where required. Generally, biodiversity conservation has dealt poorly with the scattered distribution of necessary detailed information, and needs to find a solution to assemble, harmonize and standardize the data. The prospect of monitoring essential biodiversity variables (EBVs) has been suggested in response to this challenge. The concept has generated much attention, but the EBVs themselves are still in development due to the complexity of the task, the limited resources available, and a lack of long-term commitment to maintain EBV data sets. As a first step, the scientific community and the policy sphere should agree on a set of priority candidate EBVs to be developed within the coming years to advance both large-scale ecological Dirk S. Schmeller and others research as well as global and regional biodiversity conservation. Critical ecological transitions are of high importance from both a scientific as well as from a conservation policy point of view, as they can lead to long-lasting biodiversity change with a high potential for deleterious effects on whole ecosystems and therefore also on human well-being. We evaluated candidate EBVs using six criteria: relevance, sensitivity to change, generalizability, scalability, feasibility, and data availability and provide a literature-based review for eight EBVs with high sensitivity to change. The proposed suite of EBVs comprises abundance, allelic diversity, body mass index, ecosystem heterogeneity, phenology, range dynamics, size at first reproduction, and survival rates. The eight candidate EBVs provide for the early detection of critical and potentially long-lasting biodiversity change and should be operationalized as a priority. Only with such an approach can science predict the future status of global biodiversity with high certainty and set up the appropriate conservation measures early and efficiently. Importantly, the selected EBVs would address a large range of conservation issues and contribute to a total of 15 of the 20 Aichi targets and are, hence, of high biological relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.