Peroral infection with Toxoplasma gondii leads to the development of small intestinal inflammation dependent on Th1 cytokines. The role of Th17 cells in ileitis is unknown. We report interleukin (IL)-23–mediated gelatinase A (matrixmetalloproteinase [MMP]-2) up-regulation in the ileum of infected mice. MMP-2 deficiency as well as therapeutic or prophylactic selective gelatinase blockage protected mice from the development of T. gondii–induced immunopathology. Moreover, IL-23–dependent up-regulation of IL-22 was essential for the development of ileitis, whereas IL-17 was down-regulated and dispensable. CD4+ T cells were the main source of IL-22 in the small intestinal lamina propria. Thus, IL-23 regulates small intestinal inflammation via IL-22 but independent of IL-17. Gelatinases may be useful targets for treatment of intestinal inflammation.
Balanced expression of proteases and their inhibitors is one prerequisite of tissue homeostasis. Metastatic spread of tumor cells through the organism depends on proteolytic activity and is the death determinant for cancer patients. Paradoxically, increased expression of tissue inhibitor of metalloproteinases-1 (TIMP-1), a natural inhibitor of several endometalloproteinases, including matrix metalloproteinases and a disintegrin and metalloproteinase-10 (ADAM-10), in cancer patients is negatively correlated with their survival, although TIMP-1 itself inhibits invasion of some tumor cells. Here, we show that elevated stromal expression of TIMP-1 promotes liver metastasis in two independent tumor models by inducing the hepatocyte growth factor (HGF) signaling pathway and expression of several metastasis-associated genes, including HGF and HGF-activating proteases, in the liver. We also found in an in vitro assay that suppression of ADAM-10 is in principle able to prevent shedding of cMet, which may be one explanation for the increase of cell-associated HGF receptor cMet in livers with elevated TIMP-1. Similar TIMP-1-associated changes in gene expression were detected in livers of patients with metastatic colorectal cancer. The newly identified role of TIMP-1 to create a prometastatic niche may also explain the TIMP-1 paradoxon. [Cancer Res 2007;67(18):8615-23]
Teratomas are benign tumors that form after ectopic injection of embryonic stem (ES) cells into mice and contain derivatives of all primitive germ layers. To study the role of β1 integrin during teratoma formation, we compared teratomas induced by normal and β1-null ES cells. Injection of normal ES cells gave rise to large teratomas. In contrast, β1-null ES cells either did not grow or formed small teratomas with an average weight of <5% of that of normal teratomas. Histological analysis of β1-null teratomas revealed the presence of various differentiated cells, however, a much lower number of host-derived stromal cells than in normal teratomas. Fibronectin, collagen I, and nidogen were expressed but, in contrast to normal teratomas, diffusely deposited in β1-null teratomas. Basement membranes were present but with irregular shape and detached from the cell surface.Normal teratomas had large blood vessels with a smooth inner surface, containing both host- and ES cell–derived endothelial cells. In contrast, β1-null teratomas had small vessels that were loosely embedded into the connective tissue. Furthermore, endothelial cells were always of host-derived origin and formed blood vessels with an irregular inner surface. Although β1- deficient endothelial cells were absent in teratomas, β1-null ES cells could differentiate in vitro into endothelial cells. The formation of a complex vasculature, however, was significantly delayed and of poor quality in β1-null embryoid bodies. Moreover, while vascular endothelial growth factor induced proliferation of endothelial cells as well as an extensive branching of blood vessels in normal embryoid bodies, it had no effect in β1-null embryoid bodies.
In the experimental models of intestinal inflammation and humans with inflammatory bowel diseases (IBD), increased levels of the matrix metalloproteinases (MMPs), MMP-2 and -9 (also referred to as gelatinase A and B, respectively), in inflamed tissue sites can be detected. In the presented study, we investigated potential beneficial effects exerted by doxycycline nonselectively blocking MMPs and the selective gelatinase inhibitor RO28-2653 in acute DSS colitis. Treatment with either compound for 8 days ameliorated clinical colitis pathology with a superior outcome in RO28-2653-treated animals. As compared to placebo controls, histopathological changes in the colon were less distinct following MMP blockage and IL-6 secretion in ex vivo biopsies was downregulated, paralleled by a diminished influx of pro-inflammatory immune cells and lack of overgrowth of the colonic lumen by potentially pro-inflammatory Escherichia coli of the commensal colon flora. We conclude that selective gelatinase inhibition not only exerts beneficial effects by disrupting the vicious cycle of positive feedback between immune cell stimulation and MMP induction but also prevents overgrowth of the colonic lumen by pro-inflammatory E. coli despite a lack of direct anti-bacterial properties, thus unaffecting the commensal gut microbiota. These findings put RO28-2653 into a center stage for development of intervention strategies in human IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.