Activation of naive CD4(+) T-helper cells results in the development of at least two distinct effector populations, Th1 and Th2 cells. Th1 cells produce cytokines (interferon (IFN)-gamma, interleukin (IL)-2, tumour-necrosis factor (TNF)-alpha and lymphotoxin) that are commonly associated with cell-mediated immune responses against intracellular pathogens, delayed-type hypersensitivity reactions, and induction of organ-specific autoimmune diseases. Th2 cells produce cytokines (IL-4, IL-10 and IL-13) that are crucial for control of extracellular helminthic infections and promote atopic and allergic diseases. Although much is known about the functions of these two subsets of T-helper cells, there are few known surface molecules that distinguish between them. We report here the identification and characterization of a transmembrane protein, Tim-3, which contains an immunoglobulin and a mucin-like domain and is expressed on differentiated Th1 cells. In vivo administration of antibody to Tim-3 enhances the clinical and pathological severity of experimental autoimmune encephalomyelitis (EAE), a Th1-dependent autoimmune disease, and increases the number and activation level of macrophages. Tim-3 may have an important role in the induction of autoimmune diseases by regulating macrophage activation and/or function.
Chronic progression of two T cell-mediated central nervous system (CNS) demyelinating models of multiple sclerosis, relapsing EAE (R-EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is dependent on the activation of T cells to endogenous myelin epitopes (epitope spreading). Using transfer of carboxyfluorescein succinyl ester (CFSE)-labeled T-cell receptor (TCR)-transgenic T cells and mixed bone marrow chimeras, we show that activation of naive proteolipid protein (PLP)139-151-specific T cells in SJL mice undergoing PLP178-191-induced R-EAE or TMEV-IDD occurs directly in the CNS and not in the cervical lymph nodes or other peripheral lymphoid organs. Examination of the antigen-presentation capacity of antigen-presenting cell (APC) populations purified from the CNS of mice with PLP178-191-induced R-EAE shows that only F4/80-CD11c+CD45hi dendritic cells (DCs) efficiently present endogenous antigen to activate naive PLP139-151-specific T cells in vitro. In contrast, DCs as well as F4/80+CD45hi macrophages and F4/80+CD45lo microglia activate a PLP139-151-specific helper T cell line. The data suggest that naive T cells enter the inflamed CNS and are activated by local APCs, possibly DCs, to initiate epitope spreading.
The newly identified TIM family of proteins is associated with regulation of T helper type 1 (T(H)1) and T(H)2 immune responses. TIM-1 is genetically linked to asthma and is a receptor for hepatitis A virus, but the endogenous ligand of TIM-1 is not known. Here we show that TIM-4, which is expressed by antigen-presenting cells, is the ligand for TIM-1. In vivo administration of either soluble TIM-1-immunoglobulin (TIM-1-Ig) fusion protein or TIM-4-Ig fusion protein resulted in hyperproliferation of T cells, and TIM-4-Ig costimulated T cell proliferation mediated by CD3 and CD28 in vitro. These data suggest that the TIM-1-TIM-4 interaction is involved in regulating T cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.