Background and Aims There is growing evidence that single‐stranded, circular RNA (circRNA) plays a key role in the development of certain cancers, including hepatocellular carcinoma (HCC). It is less clear, however, what role circRNA plays in HCC metastasis. Approach and Results In this study, through circRNA sequencing, we identified a circRNA: circASAP1 (a circRNA derived from exons 2 and 3 of the ASAP1 gene, hsa_circ_0085616), which is associated with pulmonary metastasis after curative resection in patients with HCC. CircASAP1 was overexpressed in HCC cell lines with high metastatic potential and in metastatic HCCs. In vitro, circASAP1 promoted cell proliferation, colony formation, migration, and invasion, and in vivo, it enhanced tumor growth and pulmonary metastasis. Mechanism studies showed that circASAP1 acts as a competing endogenous RNA for microRNA 326 (miR‐326) and microRNA 532‐5p (miR‐532‐5p), both of which are tumor suppressors in HCC. We found that mitogen‐activated protein kinase (MAPK) 1 and colony stimulating factor (CSF)‐1 were direct common targets for microRNA 326 (miR‐326) and microRNA 532‐5p (miR‐532‐5p), which were regulated by circASAP1. CircASAP1 promotes HCC cell proliferation and invasion by regulating miR‐326/miR‐532‐5p‐MAPK1 signaling and, furthermore, mediates tumor‐associated macrophage infiltration by regulating the miR‐326/miR‐532‐5p‐CSF‐1 pathway. Clinical HCC samples exhibited a positive correlation between circASAP1 expression and levels of CSF‐1, MAPK1, and CD68+ tumor‐associated macrophages, all of which were predictive of patient outcomes. Conclusion We identified circASAP1 as a key regulator of HCC metastasis that acts on miR‐326/miR‐532‐5p‐MAPK1/CSF‐1 signaling and serves as a prognostic predictor in patients with HCC.
Tumor‐associated neutrophils (TANs) play a crucial role in tumor development and progression in the cancer microenvironment. Despite increased understanding of TAN contributions to hepatocellular carcinoma (HCC) progression and prognosis, the direct interaction between TANs and HCC cells is not fully understood. In this study, we tested the effect of TANs on HCC cells in vitro and in vivo and investigated the mechanism of interaction between them. Our results showed that TANs secreted bone morphogenetic protein 2 and transforming growth factor beta 2 and triggered microRNA 301b‐3p (miR‐301‐3p) expression in HCC cells, subsequently suppressed gene expression of limbic system–associated membrane protein (LSAMP) and CYLD lysine 63 deubiquitinase (CYLD), and increased stem cell characteristics in HCC cells. These TAN‐induced HCC stem‐like cells were hyperactive in nuclear factor kappa B signaling, secreted higher levels of chemokine (C‐X‐C motif) ligand 5 (CXCL5), and recruited more TAN infiltration, suggesting a positive feedback loop. In clinical HCC samples, increased TANs correlated with elevated miR‐301b‐3p, decreased LSAMP and CYLD expression, and increased nuclear p65 accumulation and CXCL5 expression, all of which predicted patient outcome. Conclusion: Our work identified a positive feedback loop governing cancer stem‐like cells and TANs in HCC that controls tumor progression and patient outcome.
BackgroundTumor-associated neutrophils (TANs) and macrophages (TAMs) can each influence cancer growth and metastasis, but their combined effects in intrahepatic cholangiocarcinoma (ICC) remain unclear.MethodsWe explored the distributions of TANs and TAMs in patient-derived ICC samples by multiplex immunofluorescent staining and tested their separate and combined effects on ICC in vitro and in vivo. We then investigated the mechanistic basis of the effects using PCR array, western blot analysis and ELISA experiments. Finally, we validated our results in a tissue microarray composed of primary tumor tissues from 359 patients with ICC.ResultsThe spatial distributions of TANs and TAMs were correlated with each other in patient-derived ICC samples. Interaction between TANs and TAMs enhanced the proliferation and invasion abilities of ICC cells in vitro and tumor progression in a mouse xenograft model of ICC. TANs and TAMs produced higher levels of oncostatin M and interleukin-11, respectively, in co-culture than in monoculture. Both of those cytokines activated STAT3 signaling in ICC cells. Knockdown of STAT3 abolished the protumor effect of TANs and TAMs on ICC. In tumor samples from patients with ICC, increased TAN and TAM levels were correlated with elevated p-STAT3 expression. All three of those factors were independent predictors of patient outcomes.ConclusionsTANs and TAMs interact to promote ICC progression by activating STAT3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.