The proprotein convertase PCSK9 gene is the third locus implicated in familial hypercholesterolemia, emphasizing its role in cardiovascular diseases. Loss of function mutations and gene disruption of PCSK9 resulted in a higher clearance of plasma low density lipoprotein cholesterol, likely due to a reduced degradation of the liver low density lipoprotein receptor (LDLR). In this study, we show that two of the closest family members to LDLR are also PCSK9 targets. These include the very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) implicated in neuronal development and lipid metabolism. Our results show that wild type PCSK9 and more so its natural gain of function mutant D374Y can efficiently degrade the LDLR, VLDLR, and ApoER2 either following cellular co-expression or re-internalization of secreted human PCSK9. Such PCSK9-induced degradation does not require its catalytic activity. Membrane-bound PCSK9 chimeras enhanced the intracellular targeting of PCSK9 to late endosomes/lysosomes and resulted in a much more efficient degradation of the three receptors. We also demonstrate that the activity of PCSK9 and its binding affinity on VLDLR and ApoER2 does not depend on the presence of LDLR. Finally, in situ hybridization show close localization of PCSK9 mRNA expression to that of VLDLR in mouse postnatal day 1 cerebellum. Thus, this study demonstrates a more general effect of PCSK9 on the degradation of the LDLR family that emphasizes its major role in cholesterol and lipid homeostasis as well as brain development.Familial hypercholesterolemia is mainly characterized by elevated plasma LDL 2 cholesterol that is highly correlated with cardiovascular diseases (1). The main player in regulating the circulating cholesterol is the low density lipoprotein receptor (LDLR), which is expressed mostly in the liver. Recently, natural mutations in the proprotein convertase PCSK9 (2, 3) have been identified and associated with the third locus implicated in familial hypercholesterolemia (4 -6). The major function of PCSK9 seems to be an enhancement of the degradation of the LDLR (7, 8) in acidic subcellular compartments (3), likely endosomes/lysosomes (9, 10). This can occur either via an extracellular endocytotic route (11), or possibly by a direct cellular circuit not involving cell surface endocytosis of the LDLR (12). The gain of function PCSK9 mutations D374Y (13, 14) or D374H (15) have the highest impact on the development of hypercholesterolemia (16), likely through enhanced binding (17) and degradation of the LDLR (18, 19). The major binding site of LDLR to PCSK9 seems to reside within its first epidermal growth factor-like repeat namely EGF-A (20). Finally, it was recently suggested that the PCSK9-induced degradation of the cell surface LDLR does not require its proteolytic activity (21). One of the unanswered questions is the target specificity of PCSK9, and it is not known, nor obvious, whether other members of the LDLR family are also affected by PCSK9. This family consists of str...
The Reelin signaling cascade plays a crucial role in the correct positioning of neurons during embryonic brain development. Reelin binding to apolipoprotein E receptor 2 (ApoER2) and very-low-density-lipoprotein receptor (VLDLR) leads to phosphorylation of disabled 1 (Dab1), an adaptor protein which associates with the intracellular domains of both receptors. Coreceptors for Reelin have been postulated to be necessary for Dab1 phosphorylation. We show that bivalent agents specifically binding to ApoER2 or VLDLR are sufficient to mimic the Reelin signal. These agents induce Dab1 phosphorylation, activate members of the Src family of nonreceptor tyrosine kinases, modulate protein kinase B/Akt phosphorylation, and increase long-term potentiation in hippocampal slices. Induced dimerization of Dab1 in HEK293 cells leads to its phosphorylation even in the absence of Reelin receptors. The mechanism for and the sites of these phosphorylations are identical to those effected by Reelin in primary neurons. These results suggest that binding of Reelin, which exists as a homodimer in vivo, to ApoER2 and VLDLR induces clustering of ApoER2 and VLDLR. As a consequence, Dab1 becomes dimerized or oligomerized on the cytosolic side of the plasma membrane, constituting the active substrate for the kinase; this process seems to be sufficient to transmit the signal and does not appear to require any coreceptor.Correct positioning of neurons of the cortical plate depends on Reelin, an extracellular matrix protein produced by CajalRetzius cells (10), on the Reelin receptors apolipoprotein E receptor 2 (ApoER2) and very-low-density-lipoprotein receptor (VLDLR) (35), and on the intracellular adaptor protein disabled 1 (Dab1) (30). Mutations in the corresponding genes, i.e., the Reelin gene (as in the reeler mouse) (12) and the Dab1 gene (as in the scrambler and yotari mice) (16,32,37), and deletions of the genes for both ApoER2 and VLDLR (35) result in identical cortical layering defects, suggesting that the gene products are part of the same signaling pathway. The current working model proposes that Reelin binds to ApoER2 and VLDLR (11,14). Subsequent phosphorylation of Dab1 is a key event leading to the ultimate cell responses required for correct positioning of newly generated neurons (17, 18). Dab1 was originally identified as an interaction partner of Src (15) and contains a phosphotyrosine binding domain which interacts with the unphosphorylated NPXY motif present in the cytoplasmic domains of ApoER2 and VLDLR (19,34). Phosphorylation of Dab1 induced by Reelin is dependent on the presence of ApoER2 and VLDLR (5) and occurs on Tyr198 and Tyr220 (20). Recent studies demonstrated that members of the Src family of nonreceptor tyrosine kinases (SFKs) are involved in Dab1 phosphorylation in neurons (2, 6). Coreceptors, such as members of the family of cadherin-related neuronal receptors (CNRs), have been proposed to be involved in this pathway (31). Neuronal migration is also regulated by cyclin-dependent kinase 5 (27, 28), but whether t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.