Abstract-Chronic heart failure (CHF) is often associated with excitation of the sympathetic nervous system. This event is thought to be a negative predictor of survival in CHF. Sympathoexcitation and central angiotensin II (Ang II) have been causally linked. Recent studies have shown that NAD(P)H oxidase-derived reactive oxidant species (ROS) are important mediators of Ang II signaling. In the present study, we tested the hypothesis that central Ang II activates sympathetic outflow by stimulation of NAD(P)H oxidase and ROS in the CHF state. CHF was induced in male New Zealand White rabbits by chronic ventricular tachycardia. Using radio telemetry of arterial pressure and intracerebroventricular infusions, experiments were performed in the conscious state. Renal sympathetic nerve activity (RSNA) was recorded as a direct measure of sympathetic outflow. Intracerebroventricular Ang II significantly increased RSNA in sham (131.5Ϯ13.3% of control) and CHF (193.6Ϯ11.9% of control) rabbits. The increase in CHF rabbits was significantly greater than in sham rabbits (PϽ0.01). These responses were abolished by intracerebroventricular losartan, tempol, or apocynin. Resting RSNA was significantly reduced by intracerebroventricular losartan, tempol, or apocynin in CHF rabbits but not in sham rabbits. Intracerebroventricular administration of the superoxide dismutase inhibitor diethyldithio-carbamic acid increased RSNA significantly more in sham compared with CHF rabbits. NADPHdependent superoxide anion production in the rostral ventrolateral medulla (RVLM) was increased by 2.9-fold in CHF rabbits compared with sham rabbits. Finally, increases in the RVLM mRNA and protein expression of Ang II type 1 (AT 1 ) receptor and subunits of NAD(P)H oxidase (p40 phox , p47 phox , and gp91 phox ) were demonstrated in CHF rabbits. These data demonstrate intense radical stress in autonomic areas of the brain in experimental CHF and provide evidence for a tight relationship between Ang II and ROS as contributors to sympathoexcitation in CHF. Key Words: free radicals Ⅲ angiotensin receptors Ⅲ RVLM Ⅲ ventricular pacing I t is now well accepted that neural and humoral excitation are two of the primary and most reproducible sequelae of the chronic heart failure (CHF) syndrome. 1 Excessive sympathetic activation not only exacerbates the heart failure state but also is prognostic of death and complications. 2 A variety of humoral substances have been shown to be elevated in the CHF state, 1,3 of which angiotensin II (Ang II) has been considered a prime candidate for a substance that modulates sympathetic outflow because it has been known for some time that Ang II can alter sympathetic function at several sites from the central nervous system to the periphery. 4 Indeed, many of the current therapeutic targets in the treatment of CHF relate to reducing Ang II generation or blocking the effects of Ang II at its receptor sites. Despite its importance in central regulation of sympathetic outflow and cardiovascular homeostasis in the CHF state, the pre...
Key pointsr A strong correlation between disordered breathing patterns, elevated sympathetic nerve activity and enhanced chemoreflex sensitivity exists in patients with heart failure.r Evidence indicates that disordered breathing patterns and increased sympathetic nerve activity increases arrhythmia incidence in patients with heart failure.r Enhanced coupling between sympathetic and respiratory neural drive underlies elevated sympathetic nerve activity in an animal model of sleep apnoea.r We investigated the impact of carotid body chemoreceptor denervation on sympathetic nerve activity, disordered breathing and sympatho-respiratory coupling in an animal model of heart failure.r Renal sympathetic nerve activity, apnoea/hypopnoea incidence, variability measures of tidal volume and respiratory rate and arrhythmia incidence were quantified during resting breathing in heart failure animals with and without carotid body ablation.r Our results indicate that carotid body chemoreceptor denervation reduces sympathetic nerve activity, disordered breathing patterns, arrhythmia incidence and sympatho-respiratory coupling in experimental heart failure.r These findings suggest that device-oriented ablation of carotid body chemoreceptors is a viable treatment option for reduction of sympathetic nerve activity, disordered breathing patterns and arrhythmia incidence in heart failure.Abstract In congestive heart failure (CHF), carotid body (CB) chemoreceptor activity is enhanced and is associated with oscillatory (Cheyne-Stokes) breathing patterns, increased sympathetic nerve activity (SNA) and increased arrhythmia incidence. We hypothesized that denervation of the CB (CBD) chemoreceptors would reduce SNA, reduce apnoea and arrhythmia incidence and improve ventricular function in pacing-induced CHF rabbits. Resting breathing, renal SNA (RSNA) and arrhythmia incidence were measured in three groups of animals: (1) sham CHF/sham-CBD (sham-sham); (2) CHF/sham-CBD (CHF-sham); and (3) CHF/CBD (CHF-CBD). Chemoreflex sensitivity was measured as the RSNA and minute ventilatory (V E ) responses to hypoxia and hypercapnia. Respiratory pattern was measured by plethysmography and quantified by an apnoea-hypopnoea index, respiratory rate variability index and the coefficient of variation of tidal volume. Sympatho-respiratory coupling (SRC) was assessed using power spectral analysis and the magnitude of the peak coherence function between tidal volume and RSNA frequency spectra. Arrhythmia incidence and low frequency/high frequency ratio of heart rate variability were assessed using ECG and blood pressure waveforms, respectively. RSNA andV E responses to hypoxia were augmented in CHF-sham and abolished in CHF-CBD animals. Resting RSNA was greater in CHF-sham compared to sham-sham animals (43 ± 5% max vs. 23 ± 2% max, P < 0.05), and this increase was not found in CHF-CBD animals (25 ± 1% max, P < 0.05 vs. CHF-sham). Low frequency/high frequency heart rate variability ratio was similarly increased in CHF and reduced by CBD (P < 0.05). Respiratory ...
The present study aimed to determine whether peripheral and/or central chemoreflex function is altered in chronic heart failure (CHF) and whether altered chemoreflex function contributes to sympathetic activation in CHF. A rabbit model of pacing-induced CHF was employed. The development of CHF (3-4 wk of pacing) was characterized by an enlarged heart, an attenuated contractility, and an elevated central venous pressure. Renal sympathetic nerve activity (RSNA) and minute volume (MV) of ventilation in response to stimulation of peripheral chemoreceptors by isocapnic/hypoxic gases were measured in the conscious state. It was found that the baseline RSNA at normoxia was higher in CHF rabbits than in sham rabbits (35. 00 +/- 4.03 vs. 20.75 +/- 2.87% of maximum, P < 0.05). Moreover, the magnitudes of changes in RSNA and MV in response to stimulation of the peripheral chemoreceptors and the slopes of RSNA-arterial PO2 and MV-arterial PO2 curves were greater in CHF than in sham rabbits. Inhibition of the peripheral chemoreceptors by inhalation of 100% O2 decreased RSNA in CHF but not in sham rabbits. The central chemoreflex function, as evaluated by the responses of RSNA and MV to hyperoxic/hypercapnic gases, was not different between sham and CHF rabbits. These data suggest that an enhancement of the peripheral chemoreflex occurs in the rabbit model of pacing-induced CHF and that the enhanced peripheral chemoreflex function contributes to the sympathetic activation in the CHF state.
Chronic heart failure is often associated with sympathoexcitation and blunted arterial baroreflex function. These phenomena have been causally linked to elevated central ANG II mechanisms. Recent studies have shown that NAD(P)H oxidase-derived reactive oxygen species (ROS) are important mediators of ANG II signaling and therefore might play an essential role in these interactions. The aims of this study were to determine whether central subchronic infusion of ANG II in normal animals has effects on O2- production and expression of NAD(P)H oxidase subunits as well as ANG II type 1 (AT1) receptors in the rostral ventrolateral medulla (RVLM). Twenty-four male New Zealand White rabbits were divided into four groups and separately received a subchronic intracerebroventricular infusion of saline alone, ANG II alone, ANG II with losartan, and losartan alone for 1 wk. On day 7 of intracerebroventricular infusion, mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) values were recorded, and arterial baroreflex sensitivity was evaluated while animals were in the conscious state. We found that ANG II significantly increased baseline RSNA (161.9%; P< 0.05), mRNA and protein expression of AT1 receptors (mRNA, 66.7%; P < 0.05; protein, 85.1%; P < 0.05), NAD(P)H oxidase subunits (mRNA, 120.0-200.0%; P < 0.05; protein, 90.9-197.0%; P < 0.05), and O2- production (83.2%; P < 0.05) in the RVLM. In addition, impaired baroreflex control of HR (Gain(max) reduced by 48.2%; P < 0.05) and RSNA (Gain(max) reduced by 53.6%; P < 0.05) by ANG II was completely abolished by losartan. Losartan significantly decreased baseline RSNA (-49.5%; P < 0.05) and increased baroreflex control of HR (Gain(max) increased by 64.8%; P < 0.05) and RSNA (Gain(max) increased by 67.9%; P < 0.05), but had no significant effects on mRNA and protein expression of AT1 receptor and NAD(P)H oxidase subunits and O2- production in the RVLM. These data suggest that in normal rabbits, NAD(P)H oxidase-derived ROS play an important role in the modulation of sympathetic activity and arterial baroreflex function by subchronic central treatment of exogenous ANG II via AT1 receptors.
Key pointsr Heart failure with preserved ejection fraction (HFpEF) is associated with disordered breathing patterns, and sympatho-vagal imbalance.r Although it is well accepted that altered peripheral chemoreflex control plays a role in the progression of heart failure with reduced ejection fraction (HFrEF), the pathophysiological mechanisms underlying deterioration of cardiac function in HFpEF are poorly understood.r We found that central chemoreflex is enhanced in HFpEF and neuronal activation is increased in pre-sympathetic regions of the brainstem.r Our data showed that activation of the central chemoreflex pathway in HFpEF exacerbates diastolic dysfunction, worsens sympatho-vagal imbalance and markedly increases the incidence of cardiac arrhythmias in rats with HFpEF.Abstract Heart failure (HF) patients with preserved ejection fraction (HFpEF) display irregular breathing, sympatho-vagal imbalance, arrhythmias and diastolic dysfunction. It has been shown that tonic activation of the central and peripheral chemoreflex pathway plays a pivotal role in the pathophysiology of HF with reduced ejection fraction. In contrast, no studies to date have addressed chemoreflex function or its effect on cardiac function in HFpEF. Therefore, we tested whether peripheral and central chemoreflexes are hyperactive in HFpEF and if chemoreflex activation exacerbates cardiac dysfunction and autonomic imbalance. Sprague-Dawley rats (n = 32) were subjected to sham or volume overload to induce HFpEF. Resting breathing variability, chemoreflex gain, cardiac function and sympatho-vagal balance, and arrhythmia incidence were studied. HFpEF rats displayed [mean ± SD; chronic heart failure (CHF) vs. Sham, respectively] a marked increase in the incidence of apnoeas/hypopnoeas (20.2 ± 4.0 vs. 9.7 ± 2.6 events h −1 ), autonomic imbalance [0.6 ± 0.2 vs. 0.2 ± 0.1 low/high frequency heart rate variability (LF/HF HRV )] and cardiac arrhythmias (196.0 ± 239.9 vs. 19.8 ± 21.7 events h −1 ). Furthermore, HFpEF rats showed increase central chemoreflex sensitivity but not peripheral chemosensitivity. Accordingly, hypercapnic stimulation in HFpEF rats exacerbated increases in sympathetic outflow to the heart (229.6 ± 43.2% vs. 296.0 ± 43.9% LF/HF HRV , normoxia vs. hypercapnia, respectively), incidence of cardiac arrhythmias (196.0 ± 239.9 vs. 576.7 ± 472.9 events h −1 ) and diastolic dysfunction (0.008 ± 0.004 vs. 0.027 ± 0.027 mmHg μl −1 ). Importantly, the cardiovascular consequences of central chemoreflex activation were related to sympathoexcitation since * These authors contributed equally to this work. these effects were abolished by propranolol. The present results show that the central chemoreflex is enhanced in HFpEF and that acute activation of central chemoreceptors leads to increases of cardiac sympathetic outflow, cardiac arrhythmogenesis and impairment in cardiac function in rats with HFpEF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.