Objective To test whether community mobilization adds effectiveness to conventional dengue control. Design Pragmatic open label parallel group cluster randomized controlled trial. Those assessing the outcomes and analyzing the data were blinded to group assignment. Centralized computerized randomization after the baseline study allocated half the sites to intervention, stratified by country, evidence of recent dengue virus infection in children aged 3-9, and vector indices. Setting Random sample of communities in Managua, capital of Nicaragua, and three coastal regions in Guerrero State in the south of Mexico. Participants Residents in a random sample of census enumeration areas across both countries: 75 intervention and 75 control clusters (about 140 households each) were randomized and analyzed (60 clusters in Nicaragua and 90 in Mexico), including 85 182 residents in 18 838 households. Interventions A community mobilization protocol began with community discussion of baseline results. Each intervention cluster adapted the basic intervention—chemical-free prevention of mosquito reproduction—to its own circumstances. All clusters continued the government run dengue control program. Main outcome measures Primary outcomes per protocol were self reported cases of dengue, serological evidence of recent dengue virus infection, and conventional entomological indices (house index: households with larvae or pupae/households examined; container index: containers with larvae or pupae/containers examined; Breteau index: containers with larvae or pupae/households examined; and pupae per person: pupae found/number of residents). Per protocol secondary analysis examined the effect of Camino Verde in the context of temephos use. Results With cluster as the unit of analysis, serological evidence from intervention sites showed a lower risk of infection with dengue virus in children (relative risk reduction 29.5%, 95% confidence interval 3.8% to 55.3%), fewer reports of dengue illness (24.7%, 1.8% to 51.2%), fewer houses with larvae or pupae among houses visited (house index) (44.1%, 13.6% to 74.7%), fewer containers with larvae or pupae among containers examined (container index) (36.7%, 24.5% to 44.8%), fewer containers with larvae or pupae among houses visited (Breteau index) (35.1%, 16.7% to 55.5%), and fewer pupae per person (51.7%, 36.2% to 76.1%). The numbers needed to treat were 30 (95% confidence interval 20 to 59) for a lower risk of infection in children, 71 (48 to 143) for fewer reports of dengue illness, 17 (14 to 20) for the house index, 37 (35 to 67) for the container index, 10 (6 to 29) for the Breteau index, and 12 (7 to 31) for fewer pupae per person. Secondary per protocol analysis showed no serological evidence of a protective effect of temephos. Conclusions Evidence based community mobilization can add ...
Camino Verde (the Green Way) is an evidence-based community mobilisation tool for prevention of dengue and other mosquito-borne viral diseases. Its effectiveness was demonstrated in a cluster-randomised controlled trial conducted in 2010–2013 in Nicaragua and Mexico. The common approach that brought functional consistency to the Camino Verde intervention in both Mexico and Nicaragua is Socialisation of Evidence for Participatory Action (SEPA).In this article, we explain the SEPA concept and its theoretical origins, giving examples of its previous application in different countries and contexts. We describe how the approach was used in the Camino Verde intervention, with details that show commonalities and differences in the application of the approach in Mexico and Nicaragua. We discuss issues of cost, replicability and sustainability, and comment on which components of the intervention were most important to its success. In complex interventions, multiple components act in synergy to produce change. Among key factors in the success of Camino Verde were the use of community volunteers called brigadistas, the house-to-house visits they conducted, the use of evidence derived from the communities themselves, and community ownership of the undertaking.Communities received the intervention by random assignment; dengue was not necessarily their greatest concern. The very nature of the dengue threat dictated many of the actions that needed to be taken at household and neighbourhood levels to control it. But within these parameters, communities exercised a large degree of control over the intervention and displayed considerable ingenuity in the process.Trial registration ISRCTN27581154.
Zika virus (ZIKV) infection recently caused major epidemics in the Americas and is linked to congenital birth defects and Guillain-Barré Syndrome. A pilot study of ZIKV infection in Nicaraguan households was conducted from August 31 to October 21, 2016, in Managua, Nicaragua. We enrolled 33 laboratory-confirmed Zika index cases and their household members (109 contacts) and followed them on days 3–4, 6–7, 9–10, and 21, collecting serum/plasma, urine, and saliva specimens along with clinical, demographic, and socio-economic status information. Collected samples were processed by rRT-PCR to determine viral load (VL) and duration of detectable ZIKV RNA in human bodily fluids. At enrollment, 11 (10%) contacts were ZIKV rRT-PCR-positive and 23 (21%) were positive by IgM antibodies; 3 incident cases were detected during the study period. Twenty of 33 (61%) index households had contacts with ZIKV infection, with an average of 1.9 (range 1–6) positive contacts per household, and in 60% of these households, ≥50% of the members were positive for ZIKV infection. Analysis of clinical information allowed us to estimate the symptomatic to asymptomatic (S:A) ratio of 14:23 (1:1.6) among the contacts, finding 62% of the infections to be asymptomatic. The maximum number of days during which ZIKV RNA was detected was 7 days post-symptom onset in saliva and serum/plasma and 22 days in urine. Overall, VL levels in serum/plasma, saliva, and urine specimens were comparable, with means of 5.6, 5.3 and 4.5 log10 copies/ml respectively, with serum attaining the highest VL peak at 8.1 log10 copies/ml. Detecting ZIKV RNA in saliva over a similar time-period and level as in serum/plasma indicates that saliva could potentially serve as a more accessible diagnostic sample. Finding the majority of infections to be asymptomatic emphasizes the importance of silent ZIKV transmission and helps inform public health interventions in the region and globally.
BackgroundA cluster-randomized controlled trial of community mobilisation for dengue prevention in Mexico and Nicaragua reported, as a secondary finding, a higher risk of dengue virus infection in households where inspectors found temephos in water containers. Data from control sites in the preceding pilot study and the Nicaragua trial arm provided six time points (2005, 2006, 2007 and 2011, 2012, 2013) to examine potentially protective effects of temephos on entomological indices under every day conditions of the national vector control programme.MethodsThree household entomological indicators for Aedes aegypti breeding were Household Index, Households with pupae, and Pupae per Person. The primary exposure indicator at the six time points was temephos identified physically during the entomological inspection. A stricter criterion for exposure at four time points included households reporting temephos application during the last 30 days and temephos found on inspection. Using generalized linear mixed modelling with cluster as a random effect and temephos as a potential fixed effect, at each time point we examined possible determinants of lower entomological indicators.ResultsBetween 2005 and 2013, temephos exposure was not significantly associated with a reduction in any of the three entomological indices, whether or not the exposure indicator included timing of temephos application. In six of 18 multivariate models at the six time points, temephos exposure was associated with higher entomological indices; in these models, we could exclude any protective effect of temephos with 95% confidence.ConclusionOur failure to demonstrate a significant protective association between temephos and entomological indices might be explained by several factors. These include ecological adaptability of the vector, resistance of Aedes to the pesticide, operational deficiencies of vector control programme, or a decrease in preventive actions by households resulting from a false sense of protection fostered by the centralized government programme using chemical agents. Whatever the explanation, the implication is that temephos affords less protection under routine field conditions than expected from its efficacy under experimental conditions.Trial registration ISRCTN 27581154.Electronic supplementary materialThe online version of this article (doi:10.1186/s12889-017-4296-6) contains supplementary material, which is available to authorized users.
Camino Verde (the Green Way) is an evidence-based community mobilisation tool for prevention of dengue and other mosquito-borne viral diseases. Its effectiveness was demonstrated in a cluster-randomised controlled trial conducted in 2010–2013 in Nicaragua and Mexico. The Nicaraguan arm of the trial was preceded, from 2004 to 2008, by a feasibility study that provided valuable lessons and trained facilitators for the trial itself. Here, guided by the Template for Intervention Description and Replication (TIDieR), we describe the Camino Verde intervention in Nicaragua, presenting its rationale, its time and location, activities, materials used, the main actors, modes of delivery, how it was tailored to encourage community engagement, modifications made from the feasibility study to the trial itself, and how fidelity to the process originally designed was maintained. We also present information on costs and discuss the place of this study within the literature on implementation science.Trial registration ISRCTN27581154.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.