Highlights d Highly multiplexed imaging of pancreas tissues from human donors with T1D d Islet evolution through T1D progression inferred from snapshot data d The phenotype of b cells is altered prior to b cell destruction d T cell recruitment depends on both disease stage and islet profile
Heme oxygenase-1 (HO-1) is a 32-kDa microsomal enzyme that catalyzes the conversion of heme to biliverdin, releasing iron and carbon monoxide. Induction of HO-1 occurs as a protective response in cells/tissues exposed to a wide variety of oxidant stimuli. The chemotherapeutic effects of cis-diamminedichloroplatinum(II) (cisplatin), a commonly used anticancer drug, are limited by significant nephrotoxicity, which is characterized by varying degrees of renal tubular apoptosis and necrosis. The purpose of this study was to evaluate the functional significance of HO-1 expression in cisplatin-induced renal injury. Our studies demonstrate that transgenic mice deficient in HO-1 (-/-), develop more severe renal failure and have significantly greater renal injury compared with wild-type (+/+) mice treated with cisplatin. In vitro studies in human renal proximal tubule cells demonstrate that hemin, an inducer of HO-1, significantly attenuated cisplatin-induced apoptosis and necrosis, whereas inhibition of HO-1 enzyme activity reversed the cytoprotective effect. Overexpression of HO-1 resulted in a significant reduction in cisplatin-induced cytotoxicity. These studies provide a basis for future studies using targeted gene expression of HO-1 as a therapeutic and preventive modality in high-risk settings of acute renal failure.
Tyrosine 34 is a prominent and conserved residue in the active site of the manganese superoxide dismutases in organisms from bacteria to man. We have prepared the mutant containing the replacement Tyr 34 --> Phe (Y34F) in human manganese superoxide dismutase (hMnSOD) and crystallized it in two different crystal forms, orthorhombic and hexagonal. Crystal structures of hMnSOD Y34F have been solved to 1.9 A resolution in a hexagonal crystal form, denoted as Y34Fhex, and to 2.2 A resolution in an orthorhombic crystal form, denoted as Y34Fortho. Both crystal forms give structures that are closely superimposable with that of wild-type hMnSOD, with the phenyl rings of Tyr 34 in the wild type and Phe 34 in the mutant very similar in orientation. Therefore, in Y34F, a hydrogen-bonded relay that links the metal-bound hydroxyl to ordered solvent (Mn-OH to Gln 143 to Tyr 34 to H2O to His 30) is broken. Surprisingly, the loss of the Tyr 34 hydrogen bonds resulted in large increases in stability (measured by Tm), suggesting that the Tyr 34 hydroxyl does not play a role in stabilizing active-site architecture. The functional role of the side chain hydroxyl of Tyr 34 can be evaluated by comparison of the Y34F mutant with the wild-type hMnSOD. Both wild-type and Y34F had kcat/Km near 10(9) M-1 s-1, close to diffusion-controlled; however, Y34F showed kcat for maximal catalysis smaller by 10-fold than the wild type. In addition, the mutant Y34F was more susceptible to product inhibition by peroxide than the wild-type enzyme. This activity profile and the breaking of the hydrogen-bonding chain at the active site caused by the replacement Tyr 34 --> Phe suggest that Tyr 34 is a proton donor for O2* - reduction to H2O2 or is involved indirectly by orienting solvent or other residues for proton transfer. Up to 100 mM buffers in solution failed to enhance catalysis by either Y34F or the wild-type hMnSOD, suggesting that protonation from solution cannot enhance the release of the inhibiting bound peroxide ion, likely reflecting the enclosure of the active site by conserved residues as shown by the X-ray structures. The increased thermostability of the mutant Y34F and equal diffusion-controlled activity of Y34F and wild-type enzymes with normal superoxide levels suggest that evolutionary conservation of active-site residues in metalloenzymes reflects constraints from extreme rather than average cellular conditions. This new hypothesis that extreme rather than normal substrate concentrations are a powerful constraint on residue conservation may apply most strongly to enzyme defenses where the ability to meet extreme conditions directly affects cell survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.