The aim of the present study was to evaluate the impact of Trichoderma harzianum UBSTH-501- and methyl jasmonate-induced systemic resistance and their integration on the spot blotch pathogen, Bipolaris sorokiniana through enhanced phenylpropanoid activities in bread wheat ( Triticum aestivum L.). It was found that the application of MeJA (>100 mg L –1 ) inhibits the germination of B. sorokiniana spores under controlled laboratory conditions. To assess the effect of MeJA (150 mg L –1 ) in combination with the biocontrol agent T. harzianum UBSTH-501 in vivo , a green house experiment was conducted. For this, biocontrol agent T. harzianum UBSTH-501 was applied as seed treatment, whereas MeJA (150 mg L –1 ) was applied 5 days prior to pathogen inoculation. Results indicated that application of MeJA (150 mg L –1 ) did not affect the root colonization of wheat by T. harzianum UBSTH-501 in the rhizosphere. The combined application of T. harzianum UBSTH-501 and MeJA also enhanced indole acetic acid production in the rhizosphere (4.92 μg g –1 of soil) which in turn helps in plant growth and development. Further, the combined application found to enhance the activities of defense related enzymes viz. catalase (5.92 EU min –1 g –1 fresh wt.), ascorbate peroxidase [μmol ascorbate oxidized (mg prot) –1 min –1 ], phenylalanine ammonia lyase (102.25 μmol cinnamic acid h –1 mg –1 fresh wt.) and peroxidase (6.95 Unit mg –1 min –1 fresh wt.) significantly in the plants under treatment which was further confirmed by assessing the transcript level of PAL and peroxidase genes using semi-quantitative PCR approach. The results showed manifold increase in salicylic acid (SA) along with enhanced accumulation of total free phenolics, ferulic acid, caffeic acid, coumaric acid, and chlorogenic acid in the leaves of the plants treated with the biocontrol agent alone or in combination with MeJA. A significant decrease in the disease severity (17.46%) and area under disease progress curve (630.32) were also observed in the treatments with biocontrol agent and MeJA in combination as compared to B. sorokiniana alone treated plant (56.95% and 945.50, respectively). Up-regulation of phenylpropanoid cascades in response to exogenous application of MeJA and the biocontrol agent was observed. It was depicted from the results that PAL is the primary route for lignin production in wheat which reduces cell wall disruption and tissue disintegration and increases...
Endophytic bacilli of ethano-botanical plant Ocimum tenuiflorum were screened for salt stress-alleviating traits in tomato. Four promising O. tenuiflorum endophytes (Bacillus safensis BTL5, Bacillus haynesii GTR8, Bacillus paralicheniformis GTR11, and Bacillus altitudinis GTS16) were used in this study. Confocal scanning laser microscopic studies revealed the inter-genera colonization of O. tenuiflorum endophytes in tomato plants, giving insights for widening the applicability of potential endophytes to other crops. Furthermore, in a pot trial under 150 mM NaCl concentration, the inoculated endophytes contributed in reducing salt toxicity and improving recovery from salt-induced oxidative stress by different mechanisms. Reduction in reactive oxygen species (ROS) (sub-cellular H2O2 and superoxide) accumulation was observed besides lowering programmed cell death and increasing chlorophyll content. Endophyte inoculation supplemented the plant antioxidant enzyme system via the modulation of enzymatic antioxidants, viz., peroxidase, ascorbate peroxidase, superoxide dismutase, and catalase, apart from increasing proline and total phenolics. Antioxidants like proline have dual roles of antioxidants and osmoregulation, which might also have contributed to improved water relation under elevated salinity. Root architecture, viz., root length, projection area, surface area, average diameter, tips, forks, crossings, and the number of links, was improved upon inoculation, indicating healthy root growth and enhanced nutrient flow and water homeostasis. Regulation of Na+/K+ balance and water homeostasis in the plants were also evident from the modulation in the expression of abiotic stress-responsive genes, viz., LKT1, NHX1, SOS1, LePIP2, SlERF16, and SlWRKY39. Shoot tissues staining with light-excitable Na+ indicator Sodium GreenTM Tetra (tetramethylammonium) salt showed low sodium transport and accumulation in endophyte-inoculated plants. All four endophytes exhibited different mechanisms for stress alleviation and indicated complementary effects on plant growth. Furthermore, this could be harnessed in the form of a consortium for salt stress alleviation. The present study established inter-genera colonization of O. tenuiflorum endophytes in tomato and revealed its potential in maintaining Na+/K+ balance, reducing ROS, and improving root architecture under elevated salinity.
Aerobic living is thought to generate reactive oxygen species (ROS), which are an inevitable chemical component. They are produced exclusively in cellular compartments in aerobic metabolism involving significant energy transfer and are regarded as by-products. ROS have a significant role in plant response to pathogenic stress, but the pattern varies between necrotrophs and biotrophs. A fine-tuned systemic induction system is involved in ROS-mediated disease development in plants. In regulated concentrations, ROS act as a signaling molecule and activate different pathways to suppress the pathogens. However, an excess of these ROS is deleterious to the plant system. Along with altering cell structure, ROS cause a variety of physiological reactions in plants that lower plant yield. ROS also degrade proteins, enzymes, nucleic acids, and other substances. Plants have their own mechanisms to overcome excess ROS and maintain homeostasis. Microbes, especially endophytes, have been reported to maintain ROS homeostasis in both biotic and abiotic stresses by multiple mechanisms. Endophytes themselves produce antioxidant compounds and also induce host plant machinery to supplement ROS scavenging. The structured reviews on how endophytes play a role in ROS homeostasis under biotic stress were very meager, so an attempt was made to compile the recent developments in ROS homeostasis using endophytes. This review deals with ROS production, mechanisms involved in ROS signaling, host plant mechanisms in alleviating oxidative stress, and the roles of endophytes in maintaining ROS homeostasis under biotic stress.
Salt stress hampers plant growth and development. It is now becoming one of the most important threats to agricultural productivity. Rhizosphere microorganisms play key roles in modulating cellular responses and enable plant tolerant to salt stress, but the detailed mechanisms of how this occurs need in-depth investigation. The present study elucidated that the microbe-mediated restructuring of the cellular responses leads to ecological fitness and adaptiveness to the maize (Zea mays L.) grown in saline–sodic soil. In the present study, effects of seed biopriming with B. safensis MF-01, B. altitudinis MF-15, and B. velezensis MF-08 singly and in consortium on different growth parameters were recorded. Soil biochemical and enzymatic analyses were performed. The activity and gene expression of High-Affinity K+ Transporter (ZmHKT-1), Sodium/Hydrogen exchanger 1 (zmNHX1), and antioxidant enzymes (ZmAPX1.2, ZmBADH-1, ZmCAT, ZmMPK5, ZmMPK7, and ZmCPK11) were studied. The expression of genes related to lateral root development (ZmHO-1, ZmGSL-1, and ZmGSL-3) and root architecture were also carried out. Seeds bioprimed with consortium of all three strains have been shown to confer increased seed germination (23.34–26.31%) and vigor indices (vigor index I: 38.71–53.68% and vigor index II: 74.11–82.43%) as compared to untreated control plant grown in saline–sodic soil at 30 days of sowing. Results indicated that plants treated with consortium of three strains induced early production of adventitious roots (tips: 4889.29, forks: 7951.57, and crossings: 2296.45) in maize compared to plants primed with single strains and untreated control (tips: 2019.25, forks: 3021.45, and crossings: 388.36), which was further confirmed by assessing the transcript level of ZmHO-1 (7.20 folds), ZmGSL-1 (4.50 folds), and ZmGSL-3 (12.00 folds) genes using the qPCR approach. The uptake and translocation of Na+, K+, and Ca2+ significantly varied in the plants treated with bioagents alone or in consortium. qRT-PCR analysis also revealed that the ZmHKT-1 and zmNHX1 expression levels varied significantly in the maize root upon inoculation and showed a 6- to 11-fold increase in the plants bioprimed with all the three strains in combination. Further, the activity and gene expression levels of antioxidant enzymes were significantly higher in the leaves of maize subjected seed biopriming with bioagents individually or in combination (3.50- to 12.00-fold). Our research indicated that ZmHKT-1 and zmNHX1 expression could effectively enhance salt tolerance by maintaining an optimal Na+/K+ balance and increasing the antioxidant activity that keeps reactive oxygen species at a low accumulation level. Interestingly, up-regulation of ZmHKT-1, NHX1, ZmHO-1, ZmGSL-1, and ZmGSL-3 and genes encoding antioxidants regulates the cellular responses that could effectively enhance the adaptiveness and ultimately leads to better plant growth and grain production in the maize crop grown in saline–sodic soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.