The crystal structure at 2.8 A resolution of the four protein subunits containing cytochrome c oxidase from the soil bacterium Paracoccus denitrificans, complexed with antibody Fv fragment, is described. Subunit I contains 12 membrane-spanning, primarily helical segments and binds haem a and the haem a3-copper B binuclear centre where molecular oxygen is reduced to water. Two proton transfer pathways, one for protons consumed in water formation and one for 'proton pumping', could be identified. Mechanisms for proton pumping are discussed.
The light-harvesting complexes from different bacteria assume various ring sizes. In LH-2 of Rs. molischianum, the Qy transition dipole moments of neighbouring B850 and B800 BChl-as are nearly parallel to each other, that is, they are optimally aligned for Föster exciton transfer. Dexter energy transfer between these chlorophylls is also possible through interactions mediated by lycopenes and B850 BChl-a phytyl tails; the B800 BChl-a and one of the two B850 BChl-as associated with each heterodimeric unit are in van der Waals distance to a lycopene, such that singlet and triplet energy transfer between lycopene and the BChl-as can occur by the Dexter mechanism. The ring structure of the B850 BChl-as is optimal for light energy transfer in that it samples all spatial absorption and emission characteristics and places all oscillator strength into energetically low lying, thermally accessible exciton states.
The cofactor arrangement and the mode of binding to the protein seem to be very similar among the non-sulphur bacterial photosynthetic RCs. The functional role of the displaced QB molecule, which might be present as quinol, rather than quinone, is not yet clear. The newly discovered water chain to the QB binding site suggests a pathway for the protonation of the secondary quinone QB.
The control by Na+/H+ antiporters of sodium/proton concentration and cell volume is crucial for the viability of all cells. Adaptation to high salinity and/or extreme pH in plants and bacteria or in human heart muscles requires the action of Na+/H+ antiporters. Their activity is tightly controlled by pH. Here we present the crystal structure of pH-downregulated NhaA, the main antiporter of Escherichia coli and many enterobacteria. A negatively charged ion funnel opens to the cytoplasm and ends in the middle of the membrane at the putative ion-binding site. There, a unique assembly of two pairs of short helices connected by crossed, extended chains creates a balanced electrostatic environment. We propose that the binding of charged substrates causes an electric imbalance, inducing movements, that permit a rapid alternating-access mechanism. This ion-exchange machinery is regulated by a conformational change elicited by a pH signal perceived at the entry to the cytoplasmic funnel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.