Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.
Purpose: About 50% of prostate cancers have TMPRSS2-ERG fusions with concurrent ERG overexpression. The aim of this study was to determine whether clinical differences exist between ERG-positive and ERG-negative cancers in surgically treated patients not exposed to antihormonal therapy. A secondary aim was to search for differences between these tumor classes.Experimental Design: A tissue microarray containing samples from more than 2,800 prostate cancers with clinical data was analyzed for ERG alterations by immunohistochemistry and FISH. Results were compared with tumor phenotype, biochemical recurrence, and molecular features considered important for prostate cancer. The effect of ERG on androgen receptor (AR)-dependent transcription was analyzed in cell lines.Results: ERG expression was found in 52.4% of 2,805 cancers with a 95% concordance between ERG expression and ERG gene rearrangement detected by FISH. ERG expression was unrelated to clinical outcome and tumor phenotype. Differences in AMACR, Annexin A3, Bcl2, CD10, ALCAM, chromogranin A, epidermal growth factor receptor, HER2, mTOR, p53, and synaptophysin status were significant but minimal in absolute numbers. The most striking difference was found for AR expression, which was markedly higher in ERG-positive cancers. In vitro studies showed ERG-dependent impairment of AR-mediated transcriptional activity.Conclusions: The striking similarities between these two types of prostate cancers rules out a major impact of ERG on tumor aggressiveness in early, not hormonally treated cancer. The marked difference in AR levels between ERG-positive and -negative cancers supports a systematic difference in potential response to hormonal therapy as previously observed in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.