According to rapid development of chemotherapy in advanced non-small cell lung cancer (NSCLC), the Japan Lung Cancer Society has been updated its own guideline annually since 2010. In this latest version, all of the procedure was carried out in accordance with grading of recommendations assessment, development and evaluation (GRADE) system. It includes comprehensive literature search, systematic review, and determination of the recommendation by multidisciplinary expert panel which consisted of medical doctors, pharmacists, nurses, statisticians, and patients from patient advocacy group. Recently, we have had various types of chemotherapeutic drugs like kinase inhibitors or immune-checkpoint inhibitors. Thus, the guideline proposes to categorize patients into three entities: (1) driver oncogene-positive, (2) PD-L1 ≥ 50%, and (3) others. Based on this subgroup, 31 clinical questions were described. We believe that this attempt enables clinicians to choose appropriate treatment easier. Here, we report an English version of the Japan Lung Cancer Society Guidelines 2018 for NSCLC, stages IV.
The study did not demonstrate noninferiority of gefitinib compared with erlotinib in terms of PFS in patients with lung adenocarcinoma according to the predefined criteria.
BACKGROUND
Genotyping of EGFR (epidermal growth factor receptor) mutations is indispensable for making therapeutic decisions regarding whether to use EGFR tyrosine kinase inhibitors (TKIs) for lung cancer. Because some cases might pose challenges for biopsy, noninvasive genotyping of EGFR in circulating tumor DNA (ctDNA) would be beneficial for lung cancer treatment.
METHODS
We developed a detection system for EGFR mutations in ctDNA by use of deep sequencing of plasma DNA. Mutations were searched in >100 000 reads obtained from each exon region. Parameters corresponding to the limit of detection and limit of quantification were used as the thresholds for mutation detection. We conducted a multi-institute prospective study to evaluate the detection system, enrolling 288 non–small cell lung cancer (NSCLC) patients.
RESULTS
In evaluating the performance of the detection system, we used the genotyping results from biopsy samples as a comparator: diagnostic sensitivity for exon 19 deletions, 50.9% (95% CI 37.9%–63.9%); diagnostic specificity for exon 19 deletions, 98.0% (88.5%–100%); sensitivity for the L858R mutation, 51.9% (38.7%–64.9%); and specificity for L858R, 94.1% (83.5%–98.6%). The overall sensitivities were as follows: all cases, 54.4% (44.8%–63.7%); stages IA–IIIA, 22.2% (11.5%–38.3%); and stages IIIB–IV, 72.7% (60.9%–82.1%).
CONCLUSIONS
Deep sequencing of plasma DNA can be used for genotyping of EGFR in lung cancer patients. In particular, the high specificity of the system may enable a direct recommendation for EGFR-TKI on the basis of positive results with plasma DNA. Because sensitivity was low in early-stage NSCLC, the detection system is preferred for stage IIIB–IV NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.