To satisfy the microbiologic criteria of the current diagnostic guideline for nontuberculous mycobacterial pulmonary disease (PD), at least two positive sputum cultures of the same species of mycobacteria from sputum are required to avoid the casual isolation of mycobacteria. This study showed that the positivity of a serum anti-glycopeptidolipid (GPL)-core IgA antibody test has an excellent diagnostic ability among patients with radiologically suspected
Mycobacterium avium
complex (MAC)-PD or
Mycobacterium abscessus
(MAB)-PD who already had a single positive sputum culture test.
Background
Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is becoming a significant health burden. Recent advances in analysis techniques have allowed the accurate identification of previously unknown NTM species. Here, we report a case of NTM-PD caused by a newly identified mycobacteria in an immunocompetent patient.
Case presentation
A 44-year-old woman was referred to our hospital due to the frequent aggravation of her chronic respiratory symptoms, with NTM-PD-compatible computed tomography findings. Unidentified mycobacterium was repeatedly isolated from respiratory specimens and we diagnosed her as NTM-PD of unidentified mycobacterium. Subsequent whole-genome analysis revealed that the unidentified mycobacterium was a novel mycobacterium genetically close to Mycolicibacterium mucogenicum. We started combination therapy with clarithromycin, moxifloxacin, amikacin, and imipenem/cilastatin, referring to drug sensitivity test results and observed its effect on M. mucogenicum infection. Her symptoms and radiological findings improved significantly.
Conclusion
We report a case of NTM-PD caused by a newly identified mycobacteria, Mycolicibacterium toneyamachuris, genetically close to M. mucogenicum. This pathogenic mycobacterium showed different characteristics from M. mucogenicum about clinical presentation and drug sensitivity. The clinical application of genomic sequencing will advance the identification and classification of pathogenic NTM species, and enhance our understanding of mycobacterial diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.