Photoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in x-ray binary stars and active galactic nuclei.
We use Ru L3-edge (2838.5 eV) resonant inelastic x-ray scattering (RIXS) to quantify the electronic structure of Ca2RuO4, a layered 4d-electron compound that exhibits a correlation-driven metal-insulator transition and unconventional antiferromagnetism. We observe a series of Ru intraionic transitions whose energies and intensities are well described by model calculations. In particular, we find a J = 0 → 2 spin-orbit excitation at 320 meV, as well as Hund's-rule driven S = 1 → 0 spin-state transitions at 750 and 1000 meV. The energy of these three features uniquely determines the spin-orbit coupling, tetragonal crystal-field energy, and Hund's rule interaction. The parameters inferred from the RIXS spectra are in excellent agreement with the picture of excitonic magnetism that has been devised to explain the collective modes of the antiferromagnetic state. L3-edge RIXS of Ru compounds and other 4d-electron materials thus enables direct measurements of interactions parameters that are essential for realistic model calculations.
The applications of nuclear resonant scattering in laser-heated diamond anvil cells have provided an important probe for the magnetic and vibrational properties of (57)Fe-bearing materials under high pressure and high temperature. Synchrotron X-ray diffraction is one of the most powerful tools for studying phase stability and equation of state over a wide range of pressure and temperature conditions. Recently an experimental capability has been developed for simultaneous nuclear resonant scattering and X-ray diffraction measurements using synchrotron radiation. Here the application of this method to determine the sound velocities of compressed Fe(3)C is shown. The X-ray diffraction measurements allow detection of microscale impurities, phase transitions and chemical reactions upon compression or heating. They also provide information on sample pressure, grain size distribution and unit cell volume. By combining the Debye velocity extracted from the nuclear resonant inelastic X-ray scattering measurements and the structure, density and elasticity data from the X-ray diffraction measurements simultaneously obtained, more accurate sound velocity data can be derived. Our results on few-crystal and powder samples indicate strong anisotropy in the sound velocities of Fe(3)C under ambient conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.