Background Adolescent idiopathic scoliosis (AIS) is a three-dimensional spinal deformity that predominantly occurs in girls. While skeletal growth and maturation influence the development of AIS, accurate prediction of curve progression remains difficult because the prognosis for deformity differs among individuals. The purpose of this study is to develop a new diagnostic platform using a deep convolutional neural network (DCNN) that can predict the risk of scoliosis progression in patients with AIS. Methods Fifty-eight patients with AIS (49 females and 9 males; mean age: 12.5 ± 1.4 years) and a Cobb angle between 10 and 25 degrees (mean angle: 18.7 ± 4.5) were divided into two groups: those whose Cobb angle increased by more than 10 degrees within two years (progression group, 28 patients) and those whose Cobb angle changed by less than 5 degrees (non-progression group, 30 patients). The X-ray images of three regions of interest (ROIs) (lung [ROI1], abdomen [ROI2], and total spine [ROI3]), were used as the source data for learning and prediction. Five spine surgeons also predicted the progression of scoliosis by reading the X-rays in a blinded manner. Results The prediction performance of the DCNN for AIS curve progression showed an accuracy of 69% and an area under the receiver-operating characteristic curve of 0.70 using ROI3 images, whereas the diagnostic performance of the spine surgeons showed inferior at 47%. Transfer learning with a pretrained DCNN contributed to improved prediction accuracy. Conclusion Our developed method to predict the risk of scoliosis progression in AIS by using a DCNN could be a valuable tool in decision-making for therapeutic interventions for AIS.
The role of the ligamentum flavum (LF) in the pathogenesis of adolescent idiopathic scoliosis (AIS) is not well understood. Using magnetic resonance imaging (MRI), we investigated the degrees of LF hypertrophy in 18 patients without scoliosis and on the convex and concave sides of the apex of the curvature in 22 patients with AIS. Next, gene expression was compared among neutral vertebral LF and LF on the convex and concave sides of the apex of the curvature in patients with AIS. Histological and microarray analyses of the LF were compared among neutral vertebrae (control) and the LF on the apex of the curvatures. The mean area of LF in the without scoliosis, apical concave, and convex with scoliosis groups was 10.5, 13.5, and 20.3 mm2, respectively. There were significant differences among the three groups (p < 0.05). Histological analysis showed that the ratio of fibers (Collagen/Elastic) was significantly increased on the convex side compared to the concave side (p < 0.05). Microarray analysis showed that ERC2 and MAFB showed significantly increased gene expression on the convex side compared with those of the concave side and the neutral vertebral LF cells. These genes were significantly associated with increased expression of collagen by LF cells (p < 0.05). LF hypertrophy was identified in scoliosis patients, and the convex side was significantly more hypertrophic than that of the concave side. ERC2 and MAFB genes were associated with LF hypertrophy in patients with AIS. These phenomena are likely to be associated with the progression of scoliosis.
Ossification of the posterior longitudinal ligament (OPLL) is considered a multifactorial condition characterized by ectopic new bone formation in the spinal ligament. Recently, its connections with inflammation as well as sacroiliac (SI) joint ankylosis have been discussed. Nevertheless, whether inflammation, spinal ligament ossification, and SI joint changes are linked in OPLL has never been investigated. In this study, whole-spinal computed tomography and serum high-sensitive C-reactive protein (hs-CRP) levels were obtained in 162 patients with cervical OPLL. Ossification lesions were categorized as plateau and hill shapes. Accordingly, patients were divided into plateau-shaped (51 males and 33 females; mean age: 67.7 years) and hill-shaped (50 males and 28 females; mean age: 67.2 years) groups. SI joint changes were classified into four types and three subtypes, as previously described. Interactions among ossification shapes, hs-CRP levels, and morphological changes in the SI joint were investigated. The plateau shape was more common in the vertebral segments (59.5%), compared to the hill shape, which was predominant in the intervertebral regions (65.4%). Serum hs-CRP levels in the plateau-shaped group (0.11 ± 0.10 mg/dL) were significantly higher than those in the hill-shaped group (0.07 ± 0.08 mg/dL). SI joint intra-articular fusion was the main finding in the plateau-shaped group and showed significantly higher hs-CRP levels compared to the anterior para-articular bridging, which more frequently occurred in the hill-shaped group. Our findings suggested a possible inflammation mechanism that might contribute to the new bone formation in OPLL, particularly the plateau shape.
Objective: Using segmental dynamic and static factors, we aimed to elucidate the pathogenesis and relationship between ossification of the posterior longitudinal ligament (OPLL) and the severity of cervical myelopathy.Methods: Retrospective analysis of 163 OPLL patients' 815 segments. Imaging was used to evaluate each segmental space available for the spinal cord (SAC), OPLL diameter, type, bone space, K-line, the C2–7 Cobb angle, each segmental range of motion (ROM), and total ROM. Magnetic resonance imaging was used to evaluate spinal cord signal intensity. Patients were divided into the myelopathy group (M group) and the without myelopathy group (WM group).Results: Minimal SAC (p = 0.043), (C2–7) Cobb angle (p = 0.004), total ROM (p = 0.013), and local ROM (p = 0.022) were evaluated as an independent predictor of myelopathy in OPLL. Different from the previous report, the M group had a straighter whole cervical spine (p < 0.001) and poorer cervical mobility (p < 0.001) compared to the WM group. Total ROM was not always a risk factor for myelopathy, as its impact depended on SAC, when SAC > 5 mm, the incidence rate of myelopathy decreased with the increase of total ROM. Lower cervical spine (C5–6, C6–7) showing increased “Bridge-Formation,” along with spinal canal stenosis and segmental instability (C2–3, C3–4) in the upper cervical spine, could cause myelopathy in M group (p < 0.05).Conclusion: Cervical myelopathy is linked to the OPLL’s narrowest segment and its segmental motion. The hypermobility of the C2–3 and C3–4, contributes significantly to the development of myelopathy in OPLL.
Intervertebral disc (IVD) diseases are common spinal disorders that cause neck or back pain in the presence or absence of an underlying neurological disorder. IVD diseases develop on the basis of degeneration, and there are no established treatments for degeneration. IVD diseases may therefore represent a candidate for the application of regenerative medicine, potentially employing normal human dermal fibroblasts (NHDFs) induced to differentiate into nucleus pulposus (NP) cells. Here, we used a three-dimensional culture system to demonstrate that ectopic expression of MYC, KLF4, NOTO, SOX5, SOX6, and SOX9 in NHDFs generated NP-like cells, detected using Safranin-O staining. Quantitative PCR, microarray analysis, and fluorescence-activated cell sorting revealed that the induced NP cells exhibited a fully differentiated phenotype. These findings may significantly contribute to the development of effective strategies for treating IVD diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.