BackgroundMolecular clock estimates of crown strepsirhine origins generally advocate an ancient antiquity for Malagasy lemuriforms and Afro-Asian lorisiforms, near the onset of the Tertiary but most often extending back to the Late Cretaceous. Despite their inferred early origin, the subsequent evolutionary histories of both groups (except for the Malagasy aye-aye lineage) exhibit a vacuum of lineage diversification during most part of the Eocene, followed by a relative acceleration in diversification from the late Middle Eocene. This early evolutionary stasis was tentatively explained by the possibility of unrecorded lineage extinctions during the early Tertiary. However, this prevailing molecular view regarding the ancient origin and early diversification of crown strepsirhines must be viewed with skepticism due to the new but still scarce paleontological evidence gathered in recent years.Methodological/Principal FindingsHere, we describe new fossils attributable to Djebelemur martinezi, a≈50 Ma primate from Tunisia (Djebel Chambi). This taxon was originally interpreted as a cercamoniine adapiform based on limited information from its lower dentition. The new fossils provide anatomical evidence demonstrating that Djebelemur was not an adapiform but clearly a distant relative of lemurs, lorises and galagos. Cranial, dental and postcranial remains indicate that this diminutive primate was likely nocturnal, predatory (primarily insectivorous), and engaged in a form of generalized arboreal quadrupedalism with frequent horizontal leaping. Djebelemur did not have an anterior lower dentition as specialized as that characterizing most crown strepsirhines (i.e., tooth-comb), but it clearly exhibited a transformed antemolar pattern representing an early stage of a crown strepsirhine-like adaptation (“pre-tooth-comb”).Conclusions/SignificanceThese new fossil data suggest that the differentiation of the tooth-comb must postdate the djebelemurid divergence, a view which hence constrains the timing of crown strepsirhine origins to the Middle Eocene, and then precludes the existence of unrecorded lineage extinctions of tooth-combed primates during the earliest Tertiary.
Cette étude intègre des faunes inédites de chiroptères fossiles découvertes lors de plusieurs campagnes de terrain réalisées en Afrique du Nord. Il s'agit de localités fossilifères datées de l'Éocène inférieur à moyen de Tunisie (Chambi) et d'Algérie (Glib Zegdou). Les différentes analyses systématiques et cladistiques réalisées sur ce matériel fossile, essentiellement constitué de dents isolées, ont permis d'apporter de nombreux éclaircissements sur les modalités évolutives de la radiation des premiers microchiroptères modernes. Ces nouvelles faunes ont livré pas moins de huit nouveaux taxons répartis dans cinq familles modernes bien identifiées : un Necromantidae (?Necromantis fragmentum Ravel, n. sp.), deux Hipposideridae Miller, 1907 (?Palaeophyllophora tunisiensis Ravel, n. sp. et Hipposideros (Pseudorhinolophus) africanum Ravel, n. sp.), trois Emballonuridae Gervais in de Castelnau, 1855 (Vespertiliavus kasserinensis Ravel, n. sp., ?Vespertiliavus aenigma Ravel, n. sp., et Pseudovespertiliavus parva Ravel n. gen., n. sp.), un Nycteridae (Khoufechia gunnelli Ravel n. gen., n. sp.) ainsi qu'un Vespertilionidae indéterminé. Deux autres taxons sont également répertoriés (Chambinycteris pusilli Ravel n. gen., n. sp. et Drakonycteris glibzegdouensis Ravel n. gen., n. sp.), mais leur morphologie dentaire originale ne permet pas de les attribuer de manière formelle à des familles connues. Deux analyses cladistiques permettent de clarifier les positions phylogénétiques des taxons les mieux documentés. Par ailleurs, elles mettent en évidence l'existence d'un axe majeur de dispersion des chiroptères Hipposideridae et Emballonuridae depuis l'Afrique du Nord vers le Sud de l'Europe durant l'Éocène moyen.
Although advanced anthropoid primates (i.e., Simiiformes) are recorded at the end of the Eocene in North Africa (Proteopithecidae, Parapithecidae, and Oligopithecidae), the origin and emergence of this group has so far remained undocumented. The question as to whether these primates are the result of a monophyletic radiation of endemic anthropoids in Africa, or several Asian clades colonizing Africa, is a current focus of paleoprimatology. In this article, we report the discovery of a new anthropoid from Djebel el Kébar in central Tunisia, dating from the late middle Eocene (Bartonian). This taxon, Amamria tunisiensis, new genus and species, currently known by only one isolated upper molar, is among the most ancient anthropoids to be recorded in Africa thus far. Amamria displays a suite of dental features that are primarily observed in Eosimiiformes (stem Anthropoidea). However, it is not allocated to any known family of that group (i.e., Asian Eosimiidae and Afro-Asian Afrotarsiidae) inasmuch as it develops some dental traits that are unknown among eosimiiforms, but can be found in African simiiform anthropoids such as proteopithecids and oligopithecids. With such a mosaic of dental traits, Amamria appears to be a structural intermediate, and as such it could occupy a key position, close to the root of the African simiiforms. Given its antiquity and its apparent pivotal position, the possibility exists that Amamria could have evolved in Africa from Asian eosimiiform or Asian "proto"-simiiform ancestors, which would have entered Africa sometime during the middle Eocene. Amamria could then represent one of the earliest offshoots of the African simiiform radiation. This view would then be rather in favor of the hypothesis of a monophyletic radiation of endemic simiiform anthropoids in Africa. Finally, these new data suggest that there must have been at least two Asian anthropoid colonizers of Africa: the afrotarsiids and the ancestor of Amamria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.