The development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine is likely to depend on knowledge of circulating variants of genes other than the commonly sequenced gag andenv genes. In addition, full-genome data are particularly limited for HIV-1 subtype C, currently the most commonly transmitted subtype in India and worldwide. Likewise, little is known about sequence variation of HIV-1 in India, the country facing the largest burden of HIV worldwide. Therefore, the objective of this study was to clone and characterize the complete genome of HIV-1 from seroconverters infected with subtype C variants in India. Cocultured HIV-1 isolates were obtained from six seroincident individuals from Pune, India, and virtually full-length HIV-1 genomes were amplified, cloned, and sequenced from each. Sequence analysis revealed that five of the six genomes were of subtype C, while one was a mosaic of subtypes A and C, with multiple breakpoints in env,nef, and the 3′ long terminal repeat as determined by both maximal χ2 analysis and phylogenetic bootstrapping. Sequences were compared for preservation of known cytotoxic T lymphocyte (CTL) epitopes. Compared with those of the HIV-1LAI sequence, 38% of well-defined CTL epitopes were identical. The proportion of nonconservative substitutions for Env, at 61%, was higher (P < 0.001) than those for Gag (24%), Pol (18%), and Nef (32%). Therefore, characterized CTL epitopes demonstrated substantial differences from subtype B laboratory strains, which were most pronounced in Env. Because these clones were obtained from Indian seroconverters, they are likely to facilitate vaccine-related efforts in India by providing potential antigens for vaccine candidates as well as for assays of vaccine responsiveness.
Cellular entry of human immunodeficiency virus type 1 (HIV-1) requires binding to both CD4 (ref, 1, 2) and to one of the chemokine receptors recently discovered to act as coreceptors. Viruses that infect T-cell lines to form syncytia (syncytium-inducing, SI) are frequently found in late-stage HIV disease and utilize the chemokine receptor CXCR-4; macrophage-tropic viruses are non-syncytium-inducing (NSI), found throughout disease and utilize CCR-5 (ref. 3-11). We postulated that CCR-5 gene defects might reduce infection risk in seronegative subjects and prolong AIDS-free survival in seropositive subjects with NSI but not SI virus. Homozygous (delta ccr5/delta ccr5) and heterozygous (CCR5/delta ccr5) CCR-5 deletions (delta ccr5) were found in 7 (2.7%) and 51 (19.5%), respectively, of 261 seronegative subjects from the San Francisco Men's Health Study. CCR-5/delta ccr5 genotype was identified in 33 of 172 (19.2%) nonprogressors and 25 of 234 (10.7%) progressors from the seropositive arm of this cohort. The delta ccr5 allele conferred a significant protective effect against HIV-1 infection (P = 0.001) and a survival advantage against disease progression (P = 0.02). Although both progressing and nonprogressing CCR5/delta ccr5 subjects were identified, a distinct survival advantage was shown for those with NSI virus (P < 0.0001). Thus, the protective effect of delta ccr5 against disease progression is lost when the infecting virus uses CXCR-4 as a coreceptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.