SummaryLimited clinical benefits derived from anti-VEGF therapy have driven the identification of new targets involved in tumor angiogenesis. Here, we report an integrative meta-analysis to define the transcriptional program underlying angiogenesis in human cancer. This approach identified ELTD1, an orphan G-protein-coupled receptor whose expression is induced by VEGF/bFGF and repressed by DLL4 signaling. Extensive analysis of multiple cancer types demonstrates significant upregulation of ELTD1 in tumor-associated endothelial cells, with a higher expression correlating with favorable prognosis. Importantly, ELTD1 silencing impairs endothelial sprouting and vessel formation in vitro and in vivo, drastically reducing tumor growth and greatly improving survival. Collectively, these results provide insight into the regulation of tumor angiogenesis and highlight ELTD1 as key player in blood vessel formation.
The miR-200 family is well known to inhibit the epithelial–mesenchymal transition, suggesting it may therapeutically inhibit metastatic biology. However, conflicting reports regarding the role of miR-200 in suppressing or promoting metastasis in different cancer types have left unanswered questions. Here we demonstrate a difference in clinical outcome based on miR-200's role in blocking tumour angiogenesis. We demonstrate that miR-200 inhibits angiogenesis through direct and indirect mechanisms by targeting interleukin-8 and CXCL1 secreted by the tumour endothelial and cancer cells. Using several experimental models, we demonstrate the therapeutic potential of miR-200 delivery in ovarian, lung, renal and basal-like breast cancers by inhibiting angiogenesis. Delivery of miR-200 members into the tumour endothelium resulted in marked reductions in metastasis and angiogenesis, and induced vascular normalization. The role of miR-200 in blocking cancer angiogenesis in a cancer-dependent context defines its utility as a potential therapeutic agent.
SUMMARY Ovarian cancer has a clear predilection for metastasis to the omentum, but the underlying mechanisms involved in ovarian cancer spread are not well understood. Here, we used a parabiosis model that demonstrates preferential hematogenous metastasis of ovarian cancer to the omentum. Our studies revealed that the ErbB3-neuregulin1 (NRG1) axis is a dominant pathway responsible for hematogenous omental metastasis. Elevated levels of ErbB3 in ovarian cancer cells and NRG1 in the omentum allowed for tumor cell localization and growth in the omentum. Depletion of ErbB3 in ovarian cancer impaired omental metastasis. Our results highlight hematogenous metastasis as an important mode of ovarian cancer metastasis. These findings have implications for designing alternative strategies aimed at preventing and treating ovarian cancer metastasis.
SUMMARY We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications.
Cancer-related deregulation of miRNA biogenesis has been suggested, but the underlying mechanisms remain elusive. Here, we report a previously unrecognized effect of hypoxia in the downregulation of Drosha and Dicer in cancer cells that leads to dysregulation of miRNA biogenesis and increased tumor progression. We show that hypoxia mediated downregulation of Drosha is dependent on ETS1/ELK1 transcription factors. Moreover, mature miRNA array and deep sequencing studies reveal altered miRNA maturation in cells under hypoxic conditions. At a functional level, this phenomenon results in increased cancer progression in vitro and in vivo, and data from patient samples are suggestive of miRNA biogenesis downregulation in hypoxic tumors. Rescue of Drosha by siRNAs targeting ETS1/ELK1 in vivo results in significant tumor regression. These findings provide a new link in the mechanistic understanding of global miRNA downregulation in the tumor microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.