Structure/function relationships of different biopolymers (alginate, dextran, or beta-cyclodextrin) were analyzed as single excipients or combined with trehalose in relation to their efficiency as enzyme stabilizers in freeze-dried formulations and compared to trehalose. Particularly, a novel synthesized polymer beta-cyclodextrin-branched alginate (beta-CD-A) was employed as excipient. During freeze-drying, the polymers or their mixtures did not confer better protection to invertase compared to trehalose. Beta-CD-A (with or without trehalose), beta-cyclodextrin (beta-CD), or dextran with trehalose were the best protective agents during thermal treatment, while beta-CD and alginate showed a negative effect on invertase activity preservation. The beta-CD linked alginate combined the physical stability provided by alginate with the stabilization of hydrophobic regions of the enzyme provided by cyclodextrin. Beta-CD-A was effective even at conditions at which trehalose lost its protective effect. A relatively simple covalent combination of two biopolymers significantly affected their functionalities and, consequently, their interactions with proteins, modifying enzyme stability patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.