Background-Fibroblast growth factor 23 (FGF-23) is a hormone that increases the rate of urinary excretion of phosphate and inhibits renal production of 1,25-dihydroxyvitamin D, thus helping to mitigate hyperphosphatemia in patients with kidney disease. Hyperphosphatemia and low 1,25-dihydroxyvitamin D levels are associated with mortality among patients with chronic kidney disease, but the effect of the level of FGF-23 on mortality is unknown.
Background Low levels of total 25-hydroxyvitamin D are common among black Americans. Vitamin D–binding protein has not been considered in the assessment of vitamin D deficiency. Methods In the Healthy Aging in Neighborhoods of Diversity across the Life Span cohort of blacks and whites (2085 participants), we measured levels of total 25-hydroxyvitamin D, vitamin D–binding protein, and parathyroid hormone as well as bone mineral density (BMD). We genotyped study participants for two common polymorphisms in the vitamin D–binding protein gene (rs7041 and rs4588). We estimated levels of bioavailable 25-hydroxyvitamin D in homozygous participants. Results Mean (±SE) levels of both total 25-hydroxyvitamin D and vitamin D–binding protein were lower in blacks than in whites (total 25-hydroxyvitamin D, 15.6±0.2 ng per milliliter vs. 25.8±0.4 ng per milliliter, P<0.001; vitamin D–binding protein, 168±3 μg per milliliter vs. 337±5 μg per milliliter, P<0.001). Genetic polymorphisms independently appeared to explain 79.4% and 9.9% of the variation in levels of vitamin D–binding protein and total 25-hydroxyvitamin D, respectively. BMD was higher in blacks than in whites (1.05±0.01 g per square centimeter vs. 0.94±0.01 g per square centimeter, P<0.001). Levels of parathyroid hormone increased with decreasing levels of total or bioavailable 25-hydroxyvitamin D (P<0.001 for both relationships), yet within each quintile of parathyroid hormone concentration, blacks had significantly lower levels of total 25-hydroxyvitamin D than whites. Among homozygous participants, blacks and whites had similar levels of bioavailable 25-hydroxy vitamin D overall (2.9±0.1 ng per milliliter and 3.1±0.1 ng per milliliter, respectively; P = 0.71) and within quintiles of parathyroid hormone concentration. Conclusions Community-dwelling black Americans, as compared with whites, had low levels of total 25-hydroxyvitamin D and vitamin D–binding protein, resulting in similar concentrations of estimated bioavailable 25-hydroxyvitamin D. Racial differences in the prevalence of common genetic polymorphisms provide a likely explanation for this observation. (Funded by the National Institute on Aging and others.)
Vitamin D deficiency is associated with cardiovascular disease, the most common cause of mortality in hemodialysis patients. To investigate the relation between blood levels of 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D) with hemodialysis outcomes, we measured baseline vitamin D levels in a cross-sectional analysis of 825 consecutive patients from within a prospective cohort of incident US hemodialysis patients. Of these patients, 78% were considered vitamin D deficient with 18% considered severely deficient. Calcium, phosphorus, and parathyroid hormone levels correlated poorly with 25D and 1,25D concentrations. To test the association between baseline vitamin D levels and 90-day mortality, we selected the next 175 consecutive participants who died within 90 days and compared them to the 750 patients who survived in a nested case-control analysis. While low vitamin D levels were associated with increased mortality, significant interaction was noted between vitamin D levels, subsequent active vitamin D therapy, and survival. Compared to patients with the highest 25D or 1,25D levels who received therapy, untreated deficient patients were at significantly increased risk for early mortality. Our study shows that among incident hemodialysis patients, vitamin D deficiency is common, correlates poorly with other components of mineral metabolism and is associated with increased early mortality.
clinicaltrials.gov Identifier: NCT00497146.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.