Pig islets are an alternative source for islet transplantation to treat type 1 diabetes (T1D), but reproducible curative potential in the pig-to-nonhuman primate (NHP) model has not been demonstrated. Here, we report that pig islet grafts survived and maintained normoglycemia for >6 months in four of five consecutive immunosuppressed NHPs. Pig islets were isolated from designated pathogen-free (DPF) miniature pigs and infused intraportally into streptozotocin-induced diabetic rhesus monkeys under pretreatment with cobra venom factor (CVF), anti-thymocyte globulin (ATG) induction and maintenance with anti-CD154 monoclonal antibody and low-dose sirolimus. Ex vivo expanded autologous regulatory T cells were adoptively transferred in three recipients. Blood glucose levels were promptly normalized in all five monkeys and normoglycemia (90-110 mg/dL) was maintained for >6 months in four cases, the longest currently up to 603 days. Intravenous glucose tolerance tests during the follow-up period showed excellent glucose disposal capacity and porcine C-peptide responses. Adoptive transfer of autologous regulatory T cells was likely to be associated with more stable and durable normoglycemia. Importantly, the recipients showed no serious adverse effects. Taken together, our results confirm the clinical feasibility of pig islet transplantation to treat T1D patients without the need for excessive immunosuppressive therapy.
The recognition of lysine-type peptidoglycans (PG) by the PG recognition complex has been suggested to cause activation of the serine protease cascade leading to the processing of Spätzle and subsequent activation of the Toll signaling pathway. So far, two serine proteases involved in the lysine-type PG Toll signaling pathway have been identified. One is a modular serine protease functioning as an initial enzyme to be recruited into the lysine-type PG recognition complex. The other is the Drosophila Spätzle processing enzyme (SPE), a terminal enzyme that converts Spätzle proprotein to its processed form capable of binding to the Toll receptor. However, it remains unclear how the initial PG recognition signal is transferred to Spätzle resulting in Toll pathway activation. Also, the biochemical characteristics and mechanism of action of a serine protease linking the modular serine protease and SPE have not been investigated. Here, we purified and cloned a novel upstream serine protease of SPE that we named SAE, SPE-activating enzyme, from the hemolymph of a large beetle, Tenebrio molitor larvae. This enzyme was activated by Tenebrio modular serine protease and in turn activated the Tenebrio SPE. The biochemical ordered functions of these three serine proteases were determined in vitro, suggesting that the activation of a three-step proteolytic cascade is necessary and sufficient for lysine-type PG recognition signaling. The processed Spätzle by this cascade induced antibacterial activity in vivo. These results demonstrate that the three-step proteolytic cascade linking the PG recognition complex and Spätzle processing is essential for the PG-dependent Toll signaling pathway.
Some synthetic lipopeptides, in addition to native lipoproteins derived from both Gram-negative bacteria and mycoplasmas, are known to activate TLR2 (Toll-like receptor 2). However, the native lipoproteins inherent to Gram-positive bacteria, which function as TLR2 ligands, have not been characterized. Here, we have purified a native lipoprotein to homogeneity from Staphylococcus aureus to study as a native TLR2 ligand. The purified 33-kDa lipoprotein was capable of stimulating TLR2 and was identified as a triacylated SitC lipoprotein, which belongs to a family of ATP binding cluster (ABC) transporter substrate-binding proteins. Analyses of the SitC-mediated production of cytokine using mouse peritoneal macrophages revealed that the SitC protein (3 nM) induced the production of tumor necrosis factor-␣ and interleukin-6. Moreover, analysis of knock-out mice showed that SitC required TLR2 and MyD88, but not TLR1 or TLR6, for the induction of cytokines. In addition to the S. aureus SitC lipoprotein, we purified two other native ABC transporter substrate-binding lipoproteins from Bacillus subtilis and Micrococcus luteus, which were both shown to stimulate TLR2. These results demonstrate that S. aureus SitC lipoprotein is triacylated and that the ABC transporter substrate-binding lipoproteins of Gram-positive bacteria function as native ligands for TLR2.
y These authors contributed equally to this project and should be considered co-first authors.The porcine cornea may be a good solution for the shortage of human donor corneas because its size and refractive properties are comparable to those of the human cornea. However, antigenic differences need to be overcome to apply xenocorneal transplantation in actual clinical practice. We aimed to investigate the feasibility of full-thickness porcine corneas as human corneal substitutes using a CD40-CD154 costimulatory pathway blocking strategy in a clinically applicable pigto-nonhuman primate corneal transplantation model. As a result, the mean survival time of the xenocorneal grafts in recipients who received anti-CD154 antibodybased immunosuppressants (POD318 (n ¼ 4); >933, >243, 318 and >192) was significantly longer than that in controls (POD28 (n ¼ 3); 21, 28 and 29; p ¼ 0.010, logrank test). Administration of anti-CD154 antibodies markedly reduced inflammatory cellular infiltrations (predominantly CD8 T cells and macrophages) into the xenocorneal grafts and almost completely blocked xenoantigen-triggered increases in Th1-associated cytokines, chemokines and C3a in the aqueous humor. Moreover, systemic expansion of memory T cells was effectively controlled and responses of anti-Gal/donor pig-specific antibodies were considerably diminished by programmed injection of anti-CD154 antibodies. Consequently, porcine corneas might be promising human corneal substitutes when the transplantation is accompanied by potent immunosuppression such as a CD40-CD154 costimulatory pathway blockade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.