Background Muscle quality is associated with fatty degeneration or infiltration of the muscle, which may be associated with decreased muscle function and increased disability. Objective The aim of this study is to evaluate the feasibility of automated quantitative measurements of the skeletal muscle on computed tomography (CT) images to assess normal-attenuation muscle and myosteatosis. Methods We developed a web-based toolkit to generate a muscle quality map by categorizing muscle components. First, automatic segmentation of the total abdominal muscle area (TAMA), visceral fat area, and subcutaneous fat area was performed using a predeveloped deep learning model on a single axial CT image at the L3 vertebral level. Second, the Hounsfield unit of each pixel in the TAMA was measured and categorized into 3 components: normal-attenuation muscle area (NAMA), low-attenuation muscle area (LAMA), and inter/intramuscular adipose tissue (IMAT) area. The myosteatosis area was derived by adding the LAMA and IMAT area. We tested the feasibility of the toolkit using randomly selected healthy participants, comprising 6 different age groups (20 to 79 years). With stratification by sex, these indices were compared between age groups using 1-way analysis of variance (ANOVA). Correlations between the myosteatosis area or muscle densities and fat areas were analyzed using Pearson correlation coefficient r. Results A total of 240 healthy participants (135 men and 105 women) with 40 participants per age group were included in the study. In the 1-way ANOVA, the NAMA, LAMA, and IMAT were significantly different between the age groups in both male and female participants (P≤.004), whereas the TAMA showed a significant difference only in male participants (male, P<.001; female, P=.88). The myosteatosis area had a strong negative correlation with muscle densities (r=–0.833 to –0.894), a moderate positive correlation with visceral fat areas (r=0.607 to 0.669), and a weak positive correlation with the subcutaneous fat areas (r=0.305 to 0.441). Conclusions The automated web-based toolkit is feasible and enables quantitative CT assessment of myosteatosis, which can be a potential quantitative biomarker for evaluating structural and functional changes brought on by aging in the skeletal muscle.
Background and Aim This study aimed to investigate the relationship between hepatic steatosis (HS) evaluated by biopsy and visceral adiposity assessed by computed tomography in lean living liver donor candidates and to determine the risk factors for lean non‐alcoholic fatty liver disease (NAFLD). Methods This retrospective study included 250 lean (body mass index, < 23 kg/m2) potential living liver donors (mean age, 31.1 ± 8.6 years; 141 men) who had undergone liver biopsy and abdominal computed tomography between 2017 and 2018. Anthropometry, laboratory parameters, body composition, and the degree of HS were evaluated. Logistic regression was used to identify independent predictors of lean NAFLD. Results The visceral fat area (VFA) was significantly correlated with the degree of HS in men (r = 0.408; P < 0.001) and women (r = 0.360; P < 0.001). The subcutaneous fat area was significantly correlated with the degree of HS in men (r = 0.398; P < 0.001), but not in women. The skeletal muscle area did not correlate with the degree of HS in either men or women. In the multivariable logistic regression analysis, the VFA (odds ratio [OR], 1.028; 95% confidence interval [CI], 1.013–1.044; P < 0.001) and subcutaneous fat area (OR, 1.016; 95% CI, 1.004–1.028; P = 0.009) were independent risk factors for lean NAFLD in men, and the VFA (OR, 1.036; 95% CI, 1.013–1.059; P = 0.002) was an independent risk factor for lean NAFLD in women. Conclusions The severity of non‐alcoholic fatty liver was positively correlated with visceral fat accumulation in a lean Asian population. Visceral adiposity may be a risk factor for lean NAFLD in potential living liver donors.
As sarcopenia research has been gaining emphasis, the need for quantification of abdominal muscle on computed tomography (CT) is increasing. Thus, a fully automated system to select L3 slice and segment muscle in an end-to-end manner is demanded. We aimed to develop a deep learning model (DLM) to select the L3 slice with consideration of anatomic variations and to segment cross-sectional areas (CSAs) of abdominal muscle and fat. Our DLM, named L3SEG-net, was composed of a YOLOv3-based algorithm for selecting the L3 slice and a fully convolutional network (FCN)-based algorithm for segmentation. The YOLOv3-based algorithm was developed via supervised learning using a training dataset (n = 922), and the FCN-based algorithm was transferred from prior work. Our L3SEG-net was validated with internal (n = 496) and external validation (n = 586) datasets. Ground truth L3 level CT slice and anatomic variation were identified by a board-certified radiologist. L3 slice selection accuracy was evaluated by the distance difference between ground truths and DLM-derived results. Technical success for L3 slice selection was defined when the distance difference was < 10 mm. Overall segmentation accuracy was evaluated by CSA error and DSC value. The influence of anatomic variations on DLM performance was evaluated. In the internal and external validation datasets, the accuracy of automatic L3 slice selection was high, with mean distance differences of 3.7 ± 8.4 mm and 4.1 ± 8.3 mm, respectively, and with technical success rates of 93.1% and 92.3%, respectively. However, in the subgroup analysis of anatomic variations, the L3 slice selection accuracy decreased, with distance differences of 12.4 ± 15.4 mm and 12.1 ± 14.6 mm, respectively, and with technical success rates of 67.2% and 67.9%, respectively. The overall segmentation accuracy of abdominal muscle areas was excellent regardless of anatomic variation, with CSA errors of 1.38–3.10 cm2. A fully automatic system was developed for the selection of an exact axial CT slice at the L3 vertebral level and the segmentation of abdominal muscle areas.
Background Patients with gastric cancer have an increased nutritional risk and experience a significant skeletal muscle loss after surgery. We aimed to determine whether muscle loss during the first postoperative year and preoperative nutritional status are indicators for predicting prognosis. Methods From a gastric cancer registry, a total of 958 patients who received curative gastrectomy followed by chemotherapy for stage 2 and 3 gastric cancer and survived longer than 1 year were investigated. Clinical and laboratory data were collected. Skeletal muscle index (SMI) was assessed based on the muscle area at the L3 level on abdominal computed tomography. Results Preoperative nutritional risk index (NRI) and postoperative decrement of SMI (dSMI) were significantly associated with overall survival (hazards ratio: 0.976 [95% CI: 0.962–0.991] and 1.060 [95% CI: 1.035–1.085], respectively) in a multivariate Cox regression analysis. Recurrence, tumor stage, comorbidity index were also significant prognostic indicators. Kaplan-Meier analyses exhibited that patients with higher NRI had a significantly longer survival than those with lower NRI (5-year overall survival: 75.8% vs. 63.0%, P < 0.001). In addition, a significantly better prognosis was observed in a patient group with less decrease of SMI (5-year overall survival: 75.7% vs. 66.2%, P = 0.009). A logistic regression analysis demonstrated that the performance of preoperative NRI and dSMI in mortality prediction was quite significant (AUC: 0.63, P < 0.001) and the combination of clinical factors enhanced the predictive accuracy to the AUC of 0.90 (P < 0.001). This prognostic relevance of NRI and dSMI was maintained in patients experiencing tumor recurrence and highlighted in those with stage 3 gastric adenocarcinoma. Conclusions Preoperative NRI is a predictor of overall survival in stage 2 or 3 gastric cancer patients and skeletal muscle loss during the first postoperative year was significantly associated with the prognosis regardless of relapse in stage 3 tumors. These factors could be valuable adjuncts for accurate prediction of prognosis in gastric cancer patients.
Although CT radiomics has shown promising results in the evaluation of vertebral fractures, the need for manual segmentation of fractured vertebrae limited the routine clinical implementation of radiomics. Therefore, automated segmentation of fractured vertebrae is needed for successful clinical use of radiomics. In this study, we aimed to develop and validate an automated algorithm for segmentation of fractured vertebral bodies on CT, and to evaluate the applicability of the algorithm in a radiomics prediction model to differentiate benign and malignant fractures. A convolutional neural network was trained to perform automated segmentation of fractured vertebral bodies using 341 vertebrae with benign or malignant fractures from 158 patients, and was validated on independent test sets (internal test, 86 vertebrae [59 patients]; external test, 102 vertebrae [59 patients]). Then, a radiomics model predicting fracture malignancy on CT was constructed, and the prediction performance was compared between automated and human expert segmentations. The algorithm achieved good agreement with human expert segmentation at testing (Dice similarity coefficient, 0.93–0.94; cross-sectional area error, 2.66–2.97%; average surface distance, 0.40–0.54 mm). The radiomics model demonstrated good performance in the training set (AUC, 0.93). In the test sets, automated and human expert segmentations showed comparable prediction performances (AUC, internal test, 0.80 vs 0.87, p = 0.044; external test, 0.83 vs 0.80, p = 0.37). In summary, we developed and validated an automated segmentation algorithm that showed comparable performance to human expert segmentation in a CT radiomics model to predict fracture malignancy, which may enable more practical clinical utilization of radiomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.