Rationale: Stem cell-based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell-seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts.Objectives: To define a scalable cell culture system to deliver airway epithelium to clinical grafts.Methods: Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T31Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air-liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air-liquid interface cultures.
Prostaglandin E(2) (PGE(2)) inhibits fibroblast proliferation and collagen production. Its synthesis by fibroblasts is induced by profibrotic mediators including transforming growth factor (TGF)-beta(1). However, in patients with pulmonary fibrosis, PGE(2) levels are decreased. In this study we examined the effect of TGF-beta(1) on PGE(2) synthesis, proliferation, collagen production, and cyclooxygenase (COX) mRNA levels in fibroblasts derived from fibrotic and nonfibrotic human lung. In addition, we examined the effect of bleomycin-induced pulmonary fibrosis in COX-2-deficient mice. We demonstrate that basal and TGF-beta(1)-induced PGE(2) synthesis is limited in fibroblasts from fibrotic lung. Functionally, this correlates with a loss of the anti-proliferative response to TGF-beta(1). This failure to induce PGE(2) synthesis is because of an inability to up-regulate COX-2 mRNA levels in these fibroblasts. Furthermore, mice deficient in COX-2 exhibit an enhanced response to bleomycin. We conclude that a decreased capacity to up-regulate COX-2 expression and COX-2-derived PGE(2) synthesis in the presence of increasing levels of profibrotic mediators such as TGF-beta(1) may lead to unopposed fibroblast proliferation and collagen synthesis and contribute to the pathogenesis of pulmonary fibrosis.
SummaryBackgroundIdiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with high mortality, uncertain cause, and few treatment options. Studies have identified a significant genetic risk associated with the development of IPF; however, mechanisms by which genetic risk factors promote IPF remain unclear. We aimed to identify genetic variants associated with IPF susceptibility and provide mechanistic insight using gene and protein expression analyses.MethodsWe used a two-stage approach: a genome-wide association study in patients with IPF of European ancestry recruited from nine different centres in the UK and controls selected from UK Biobank (stage 1) matched for age, sex, and smoking status; and a follow-up of associated genetic variants in independent datasets of patients with IPF and controls from two independent US samples from the Chicago consortium and the Colorado consortium (stage 2). We investigated the effect of novel signals on gene expression in large transcriptomic and genomic data resources, and examined expression using lung tissue samples from patients with IPF and controls.Findings602 patients with IPF and 3366 controls were selected for stage 1. For stage 2, 2158 patients with IPF and 5195 controls were selected. We identified a novel genome-wide significant signal of association with IPF susceptibility near A-kinase anchoring protein 13 (AKAP13; rs62025270, odds ratio [OR] 1·27 [95% CI 1·18–1·37], p=1·32 × 10−9) and confirmed previously reported signals, including in mucin 5B (MUC5B; rs35705950, OR 2·89 [2·56–3·26], p=1·12 × 10−66) and desmoplakin (DSP; rs2076295, OR 1·44 [1·35–1·54], p=7·81 × 10−28). For rs62025270, the allele A associated with increased susceptibility to IPF was also associated with increased expression of AKAP13 mRNA in lung tissue from patients who had lung resection procedures (n=1111). We showed that AKAP13 is expressed in the alveolar epithelium and lymphoid follicles from patients with IPF, and AKAP13 mRNA expression was 1·42-times higher in lung tissue from patients with IPF (n=46) than that in lung tissue from controls (n=51).InterpretationAKAP13 is a Rho guanine nucleotide exchange factor regulating activation of RhoA, which is known to be involved in profibrotic signalling pathways. The identification of AKAP13 as a susceptibility gene for IPF increases the prospect of successfully targeting RhoA pathway inhibitors in patients with IPF.FundingUK Medical Research Council, National Heart, Lung, and Blood Institute of the US National Institutes of Health, Agencia Canaria de Investigación, Innovación y Sociedad de la Información, Spain, UK National Institute for Health Research, and the British Lung Foundation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.