BACKGROUND Cellular therapies could play a role in cancer treatment and regenerative medicine if it were possible to quickly eliminate the infused cells in case of adverse events. We devised an inducible T-cell safety switch that is based on the fusion of human caspase 9 to a modified human FK-binding protein, allowing conditional dimerization. When exposed to a synthetic dimerizing drug, the inducible caspase 9 (iCasp9) becomes activated and leads to the rapid death of cells expressing this construct. METHODS We tested the activity of our safety switch by introducing the gene into donor T cells given to enhance immune reconstitution in recipients of haploidentical stem-cell transplants. Patients received AP1903, an otherwise bioinert small-molecule dimerizing drug, if graft-versus-host disease (GVHD) developed. We measured the effects of AP1903 on GVHD and on the function and persistence of the cells containing the iCasp9 safety switch. RESULTS Five patients between the ages of 3 and 17 years who had undergone stem-cell transplantation for relapsed acute leukemia were treated with the genetically modified T cells. The cells were detected in peripheral blood from all five patients and increased in number over time, despite their constitutive transgene expression. A single dose of dimerizing drug, given to four patients in whom GVHD developed, eliminated more than 90% of the modified T cells within 30 minutes after administration and ended the GVHD without recurrence. CONCLUSIONS The iCasp9 cell-suicide system may increase the safety of cellular therapies and expand their clinical applications. (Funded by the National Heart, Lung, and Blood Institute and the National Cancer Institute; ClinicalTrials.gov number, NCT00710892.)
Cytotoxic T lymphocytes (CTLs) directed to nonviral tumor-associated antigens do not survive long term and have limited antitumor activity in vivo, in part because such tumor cells typically lack the appropriate costimulatory molecules. We therefore engineered Epstein-Barr virus (EBV)-specific CTLs to express a chimeric antigen receptor directed to the diasialoganglioside GD2, a nonviral tumor-associated antigen expressed by human neuroblastoma cells. We reasoned that these genetically engineered lymphocytes would receive optimal costimulation after engagement of their native receptors, enhancing survival and antitumor activity mediated through their chimeric receptors. Here we show in individuals with neuroblastoma that EBV-specific CTLs expressing a chimeric GD2-specific receptor indeed survive longer than T cells activated by the CD3-specific antibody OKT3 and expressing the same chimeric receptor but lacking virus specificity. Infusion of these genetically modified cells seemed safe and was associated with tumor regression or necrosis in half of the subjects tested. Hence, virus-specific CTLs can be modified to function as tumordirected effector cells. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptThe promise of tumor antigen-specific T lymphocytes for the treatment of melanoma and EBVassociated malignancies 1-7 has led to efforts to retarget effector T cells and thereby extend the range of tumors that they can treat. A common strategy has been to introduce a synthetic receptor with an antigen-binding domain from an antibody coupled to a signal-transducing endodomain derived from the native T cell receptor into activated T cells (ATCs) 8 . These chimeric antigen receptors (CARs) thus have the specificity of an antibody coupled to the cytotoxic effector mechanisms of the T cell. To date, however, this strategy has had only limited success, owing in part to the lack of essential costimulatory signals to the T cell during engagement of its CAR and perhaps also to the introduction of the CAR into regulatory T (T reg ) cells, as well as into conventional T effector cells 9 . Consequently, even when the infusion of large numbers of CAR-bearing T cells is supplemented with exogenous growth factors, such as interleukin-2 (IL-2), survival in vivo is poor and antitumor activity minimal 10,11 . By contrast, small numbers of CTLs with native receptor specificity directed to persistent human viruses such as EBV can survive long term after infusion and eradicate even bulky EBV-associated malignancies, such as Hodgkin's disease and nasopharyngeal cancer 2,12-14 . A contributing factor to the superior survival and function of EBV-specific CTLs is that engagement of their native receptors by EBV-infected B cells produces extensive co-stimulation during their preparation ex vivo and by encounters with (latent) viral antigens on antigen-presenting cells in vivo 15 .This knowledge has given rise to the concept of engineering antigen-specific CTLs to provide them with a second specificity for ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.