The extracellular signal-related kinases 1 and 2 (ERK1/2) are key proteins mediating mitogen-activated protein kinase signaling downstream of RAS: phosphorylation of ERK1/2 leads to nuclear uptake and modulation of multiple targets. Here, we show that reduced dosage of ERF, which encodes an inhibitory ETS transcription factor directly bound by ERK1/2 (refs. 2,3,4,5,6,7), causes complex craniosynostosis (premature fusion of the cranial sutures) in humans and mice. Features of this newly recognized clinical disorder include multiple-suture synostosis, craniofacial dysmorphism, Chiari malformation and language delay. Mice with functional Erf levels reduced to ∼30% of normal exhibit postnatal multiple-suture synostosis; by contrast, embryonic calvarial development appears mildly delayed. Using chromatin immunoprecipitation in mouse embryonic fibroblasts and high-throughput sequencing, we find that ERF binds preferentially to elements away from promoters that contain RUNX or AP-1 motifs. This work identifies ERF as a novel regulator of osteogenic stimulation by RAS-ERK signaling, potentially by competing with activating ETS factors in multifactor transcriptional complexes.
BackgroundCraniosynostosis, the premature fusion of one or more cranial sutures, occurs in ∼1 in 2250 births, either in isolation or as part of a syndrome. Mutations in at least 57 genes have been associated with craniosynostosis, but only a minority of these are included in routine laboratory genetic testing.MethodsWe used exome or whole genome sequencing to seek a genetic cause in a cohort of 40 subjects with craniosynostosis, selected by clinical or molecular geneticists as being high-priority cases, and in whom prior clinically driven genetic testing had been negative.ResultsWe identified likely associated mutations in 15 patients (37.5%), involving 14 different genes. All genes were mutated in single families, except for IL11RA (two families). We classified the other positive diagnoses as follows: commonly mutated craniosynostosis genes with atypical presentation (EFNB1, TWIST1); other core craniosynostosis genes (CDC45, MSX2, ZIC1); genes for which mutations are only rarely associated with craniosynostosis (FBN1, HUWE1, KRAS, STAT3); and known disease genes for which a causal relationship with craniosynostosis is currently unknown (AHDC1, NTRK2). In two further families, likely novel disease genes are currently undergoing functional validation. In 5 of the 15 positive cases, the (previously unanticipated) molecular diagnosis had immediate, actionable consequences for either genetic or medical management (mutations in EFNB1, FBN1, KRAS, NTRK2, STAT3).ConclusionsThis substantial genetic heterogeneity, and the multiple actionable mutations identified, emphasises the benefits of exome/whole genome sequencing to identify causal mutations in craniosynostosis cases for which routine clinical testing has yielded negative results.
Mutations in the ERF gene, coding for ETS2 repressor factor, a member of the ETS family of transcription factors cause a recently recognized syndromic form of craniosynostosis (CRS4) with facial dysmorphism, Chiari‐1 malformation, speech and language delay, and learning difficulties and/or behavioral problems. The overall prevalence of ERF mutations in patients with syndromic craniosynostosis is around 2%, and 0.7% in clinically nonsyndromic craniosynostosis. Here, we present findings from 16 unrelated probands with ERF‐related craniosynostosis, with additional data from 20 family members sharing the mutations. Most of the probands exhibited multisutural (including pan‐) synostosis but a pattern involving the sagittal and lambdoid sutures (Mercedes‐Benz pattern) predominated. Importantly the craniosynostosis was often postnatal in onset, insidious and progressive with subtle effects on head morphology resulting in a median age at presentation of 42 months among the probands and, in some instances, permanent visual impairment due to unsuspected raised intracranial pressure (ICP). Facial dysmorphism (exhibited by all of the probands and many of the affected relatives) took the form of orbital hypertelorism, mild exorbitism and malar hypoplasia resembling Crouzon syndrome but, importantly, a Class I occlusal relationship. Speech delay, poor gross and/or fine motor control, hyperactivity and poor concentration were common. Cranial vault surgery for raised ICP and/or Chiari‐1 malformation was expected when multisutural synostosis was observed. Variable expressivity and nonpenetrance among genetically affected relatives was encountered. These observations form the most complete phenotypic and developmental profile of this recently identified craniosynostosis syndrome yet described and have important implications for surgical intervention and follow‐up.
Purpose Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism nearBMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype. Methods We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives. We examined the inhibitory activity and stability of SMAD6 missense variants. Results We found 18 (2.3%) different rare damaging SMAD6 variants, with the highest prevalence in metopic synostosis (5.8%) and an 18.3-fold enrichment of loss-of-function variants comparedwith gnomAD data (P < 10−7). Combined with eight additional variants, ≥20/26 were transmitted from an unaffected parent but rs1884302 genotype did not predict phenotype. Conclusion Pathogenic SMAD6 variants substantially increase the risk of both nonsyndromic and syndromic presentations of craniosynostosis, especially metopic synostosis. Functional analysis is important to evaluate missense variants. Genotyping of rs1884302 is not clinically useful. Mechanisms to explain the remarkable diversity of phenotypes associated with SMAD6 variants remain obscure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.