No abstract
To scrutinize the male ancestry of extant Native American populations, we examined eight biallelic and six microsatellite polymorphisms from the nonrecombining portion of the Y chromosome, in 438 individuals from 24 Native American populations (1 Na Dené and 23 South Amerinds) and in 404 Mongolians. One of the biallelic markers typed is a recently identified mutation (M242) characterizing a novel founder Native American haplogroup. The distribution, relatedness, and diversity of Y lineages in Native Americans indicate a differentiated male ancestry for populations from North and South America, strongly supporting a diverse demographic history for populations from these areas. These data are consistent with the occurrence of two major male migrations from southern/central Siberia to the Americas (with the second migration being restricted to North America) and a shared ancestry in central Asia for some of the initial migrants to Europe and the Americas. The microsatellite diversity and distribution of a Y lineage specific to South America (Q-M19) indicates that certain Amerind populations have been isolated since the initial colonization of the region, suggesting an early onset for tribalization of Native Americans. Age estimates based on Y-chromosome microsatellite diversity place the initial settlement of the American continent at approximately 14,000 years ago, in relative agreement with the age of well-established archaeological evidence.
The ancestry of the Colombian population comprises a large number of well differentiated Native communities belonging to diverse linguistic groups. In the late fifteenth century, a process of admixture was initiated with the arrival of the Europeans, and several years later, Africans also became part of the Colombian population. Therefore, the genepool of the current Colombian population results from the admixture of Native Americans, Europeans and Africans. This admixture occurred differently in each region of the country, producing a clearly stratified population. Considering the importance of population substructure in both clinical and forensic genetics, we sought to investigate and compare patterns of genetic ancestry in Colombia by studying samples from Native and non-Native populations living in its 5 continental regions: the Andes, Caribe, Amazonia, Orinoquía, and Pacific regions. For this purpose, 46 AIM-Indels were genotyped in 761 non-related individuals from current populations. Previously published genotype data from 214 Colombian Natives from five communities were used for population comparisons. Significant differences were observed between Native and non-Native populations, among non-Native populations from different regions and among Native populations from different ethnic groups. The Pacific was the region with the highest African ancestry, Amazonia harboured the highest Native ancestry and the Andean and Orinoquían regions showed the highest proportion of European ancestry. The Andean region was further sub-divided into 6 sub-regions: North East, Central West, Central East, West, South West and South East. Among these regions, the South West region showed a significantly lower European admixture than the other regions. Hardy-Weinberg equilibrium and variance values of ancestry among individuals within populations showed a potential stratification of the Pacific population.
IntroductionOne of the major challenges of modern pharmacology is the development of systems for the delivery of therapeutic molecules in a controlled and localized manner. One strategy is to use nanostructured supports, which are well suited to carry a large number of molecules on a per mass basis. A major challenge for these supports is, however, their limited ability to bypass the cell membrane. Recent studies propose that to overcome this issue, potent translocating cell-penetrating peptides (CPPs) can be conjugated to their surfaces.MethodsHere, we conjugated the antimicrobial CPP buforin II (BUF2) to the surface of magnetite nanoparticles to enhance their cell penetration. Conjugates were characterized via Fourier transform infrared spectroscopy, dynamic light scattering, and thermogravimetric analysis, and their biocompatibility was corroborated. The conjugates were delivered in both bacterial and mammalian cells demonstrating the intracellular inclusion in THP-1 cells for the first time.ResultsDespite the promising outcome, our studies showed that the obtained conjugates failed to maintain the native antimicrobial activity of BUF2. We hypothesize that to overcome this issue, a flexible linker can be inserted prior to conjugation.ConclusionOur study highlights the potential of BUF2-magnetite conjugates as cell-penetrating vehicles for the targeted delivery of pharmacological agents. This provides support for the idea of a promising combined drug delivery and antimicrobial peptide therapy.
Amphibian skin is a rich source of natural compounds with diverse antimicrobial and immune defense properties. Our previous studies showed that the frog skin secretions obtained by skin micro-organs from various species of Colombian anurans have antimicrobial activities against bacteria and viruses. We purified for the first time two antimicrobial peptides from the skin micro-organs of the Orinoco lime treefrog (Sphaenorhynchus lacteus) that correspond to Buforin II (BF2) and Frenatin 2.3S (F2.3S). Here, we have synthesized the two peptides and tested them against Gram-negative and Gram-positive bacteria, observing an effective bactericidal activity at micromolar concentrations. Evaluation of BF2 and F2.3S membrane destabilization activity on bacterial cell cultures and synthetic lipid bilayers reveals a distinct membrane interaction mechanism. BF2 agglutinates E. coli cells and synthetic vesicles, whereas F2.3S shows a high depolarization and membrane destabilization activities. Interestingly, we found that F2.3S is able to internalize within bacterial cells and can bind nucleic acids, as previously reported for BF2. Moreover, bacterial exposure to both peptides alters the expression profile of genes related to stress and resistance response. Overall, these results show the multifaceted mechanism of action of both antimicrobial peptides that can provide alternative tools in the fight against bacterial resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.