Abstract-The potential role of anti-inflammatory cytokines in the modulation of the atherosclerotic process remains unknown. Interleukin (IL)-10 has potent deactivating properties in macrophages and T cells and modulates many cellular processes that may interfere with the development and stability of the atherosclerotic plaque. IL-10 is expressed in human atherosclerosis and is associated with decreased signs of inflammation. In the present study, we show that IL-10 -deficient C57BL/6J mice fed an atherogenic diet and raised under specific pathogen-free conditions exhibit a significant 3-fold increase in lipid accumulation compared with wild-type mice. Interestingly, the susceptibility of IL-10 -deficient mice to atherosclerosis was exceedingly high (30-fold increase) when the mice were housed under conventional conditions. Atherosclerotic lesions of IL-10 -deficient mice showed increased T-cell infiltration, abundant interferon-␥ expression, and decreased collagen content. In vivo, transfer of murine IL-10 achieved 60% reduction in lesion size. These results underscore the critical roles of IL-10 in both atherosclerotic lesion formation and stability. Moreover, IL-10 appears to be crucial as a protective factor against the effect of environmental pathogens on atherosclerosis. The full text of this article is available at http://www.circresaha.org. (Circ Res. 1999;85:e17-e24.)
The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and the inflammatory response in macrophages. We show here that Rev-erb-α is highly expressed in oxidative skeletal muscle and plays a role in mitochondrial biogenesis and oxidative function, in gain- and loss-of function studies. Rev-erb-α-deficiency in skeletal muscle leads to reduced mitochondrial content and oxidative function, resulting in compromised exercise capacity. This phenotype was recapitulated in isolated fibers and in muscle cells upon Rev-erbα knock-down, while Rev-erb-α over-expression increased the number of mitochondria with improved respiratory capacity. Rev-erb-α-deficiency resulted in deactivation of the Stk11–Ampk–Sirt1–Ppargc1-α signaling pathway, whereas autophagy was up-regulated, resulting in both impaired mitochondrial biogenesis and increased clearance. Muscle over-expression or pharmacological activation of Rev-erb-α increased respiration and exercise capacity. This study identifies Rev-erb-α as a pharmacological target which improves muscle oxidative function by modulating gene networks controlling mitochondrial number and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.