Drug reaction with eosinophilia and systemic symptoms (DRESS) is a severe, drug-induced reaction that involves both the skin and the viscera. Evidence for reactivation of herpes family viruses has been seen in some DRESS patients. To understand the immunological components of DRESS and their relationship to viral reactivation, we prospectively assessed 40 patients exhibiting DRESS in response to carbamazepine, allopurinol, or sulfamethoxazole. Peripheral blood T lymphocytes from the patients were evaluated for phenotype, cytokine secretion, and repertoire of CD4+ and CD8+ and for viral reactivation. We found Epstein-Barr virus (EBV), human herpes virus 6 (HHV-6), or HHV-7 reactivation in 76% of the patients. In all patients, circulating CD8+ T lymphocytes were activated, exhibited increased cutaneous homing markers, and secreted large amounts of tumor necrosis factor-alpha and interferon-gamma. The production of these cytokines was particularly high in patients with the most severe visceral involvement. In addition, expanded populations of CD8+ T lymphocytes sharing the same T cell receptor repertoire were detected in the blood, skin, liver, and lungs of patients. Nearly half of these expanded blood CD8+ T lymphocytes specifically recognized one of several EBV epitopes. Finally, we found that the culprit drugs triggered the production of EBV in patients' EBV-transformed B lymphocytes. Thus, cutaneous and visceral symptoms of DRESS are mediated by activated CD8+ T lymphocytes, which are largely directed against herpes viruses such as EBV.
Despite persistence of leukemic stem cells, patients with chronic myeloid leukemia who achieve and maintain deep molecular responses may successfully stop the tyrosine kinase inhibitor imatinib. However, questions remain unanswered regarding the biological basis of molecular relapse after imatinib cessation. In IMMUNOSTIM, we monitored 51 patients from the French Stop IMatinib trial for peripheral blood T cells and natural killer cells. Molecular relapse-free survival at 24 months was 45.1% (95% CI: 31.44%-58.75%). At the time of imatinib discontinuation, non-relapsing patients had significantly higher numbers of natural killer cells of the cytotoxic CD56 subset than had relapsing patients, while CD56 natural killer cells, T cells and their subsets did not differ significantly. Furthermore, the CD56 natural killer-cell count was an independent prognostic factor of molecular-relapse free survival in a multivariate analysis. However, expression of natural killer-cell activating receptors, leukemia cell line K562-specific degranulation and cytokine-induced interferon-gamma secretion were decreased in non-relapsing and relapsing patients as compared with healthy individuals. After imatinib cessation, the natural killer-cell count increased significantly and stayed higher in non-relapsing patients than in relapsing patients, while receptor expression and functional properties remained unchanged. Altogether, our results suggest that natural killer cells may play a role in controlling leukemia-initiating cells at the origin of relapse after imatinib cessation, provided that these cells are numerous enough to compensate for their functional defects. Further research will decipher mechanisms underlying functional differences between natural killer cells from patients and healthy individuals and evaluate the potential interest of immunostimulatory approaches in tyrosine kinase inhibitor discontinuation strategies..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.