Cell size is determined by the balance between protein synthesis and degradation. This equilibrium is affected by hormones, nutrients, energy levels, mechanical stress and cytokines. Mutations that inactivate myostatin lead to excessive muscle growth in animals and humans, but the signals and pathways responsible for this hypertrophy remain largely unknown. Here we show that bone morphogenetic protein (BMP) signaling, acting through Smad1, Smad5 and Smad8 (Smad1/5/8), is the fundamental hypertrophic signal in mice. Inhibition of BMP signaling causes muscle atrophy, abolishes the hypertrophic phenotype of myostatin-deficient mice and strongly exacerbates the effects of denervation and fasting. BMP-Smad1/5/8 signaling negatively regulates a gene (Fbxo30) that encodes a ubiquitin ligase required for muscle loss, which we named muscle ubiquitin ligase of the SCF complex in atrophy-1 (MUSA1). Collectively, these data identify a critical role for the BMP pathway in adult muscle maintenance, growth and atrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.