A new coupled global NCEP Reanalysis for the period 1979-present is now available, at much higher temporal and spatial resolution, for climate studies. T he first reanalysis at NCEP (all acronyms are defined in the appendix), conducted in the 1990s, resulted in the NCEP-NCAR reanalysis (Kalnay et al. 1996), or R1 for brevity, and ultimately covered many years, from 1948 to the present (Kistler et al. 2001). It is still being executed at NCEP, to the benefit of countless users for monthly, and even daily, updates of the current state of the atmosphere. At the same time, other reanalyses were being conducted, namely, ERA-15 (Gibson et al. 1997) was executed for a more limited period (1979-93) at the ECMWF, COLA conducted a short reanalysis covering the May 1982-November 1983 period (Paolino et al. 1995), and NASA GSFC conducted a reanalysis covering the 1980-94 period (Schubert et al. 1997). The general purpose of conducting reanalyses is to produce multiyear global state-of-the-art gridded representations of atmospheric states, generated by a constant model and a constant data assimilation system. To use the same model and data assimilation over a very long period was the great advance during the 1990s, because gridded datasets available before 1995 had been created in real time by ever-changing models and analysis methods, even by hand analyses prior to about 1965. The hope was that a reanalysis,
[1] Results are presented from the second phase of the multiinstitution North American Land Data Assimilation System (NLDAS-2) research partnership. In NLDAS, the Noah, Variable Infiltration Capacity, Sacramento Soil Moisture Accounting, and Mosaic land surface models (LSMs) are executed over the conterminous U.S. (CONUS) in realtime and retrospective modes. These runs support the drought analysis, monitoring and forecasting activities of the National Integrated Drought Information System, as well as efforts to monitor large-scale floods. NLDAS-2 builds upon the framework of the first phase of NLDAS (NLDAS-1) by increasing the accuracy and consistency of the surface forcing data, upgrading the land surface model code and parameters, and extending the study from a 3-year (1997)(1998)(1999)) to a 30-year (1979-2008) time window. As the first of two parts, this paper details the configuration of NLDAS-2, describes the upgrades to the forcing, parameters, and code of the four LSMs, and explores overall model-to-model comparisons of land surface water and energy flux and state variables over the CONUS. Focusing on model output rather than on observations, this study seeks to highlight the similarities and differences between models, and to assess changes in output from that seen in NLDAS-1. The second part of the two-part article focuses on the validation of model-simulated streamflow and evaporation against observations. The results depict a higher level of agreement among the four models over much of the CONUS than was found in the first phase of NLDAS. This is due, in part, to recent improvements in the parameters, code, and forcing of the NLDAS-2 LSMs that were initiated following NLDAS-1. However, large inter-model differences still exist in the northeast, Lake Superior, and western mountainous regions of the CONUS, which are associated with cold season processes. In addition, variations in the representation of sub-surface hydrology in the four LSMs lead to large differences in modeled evaporation and subsurface runoff. These issues are important targets for future research by the land surface modeling community. Finally, improvement from NLDAS-1 to NLDAS-2 is summarized by comparing the streamflow measured from U.S. Geological Survey stream gauges with that simulated by four NLDAS models over 961 small basins.
[1] This is the second part of a study on continental-scale water and energy flux analysis and validation conducted in phase 2 of the North American Land Data Assimilation System project (NLDAS-2). The first part concentrates on a model-by-model comparison of mean annual and monthly water fluxes, energy fluxes and state variables. In this second part, the focus is on the validation of simulated streamflow from four land surface models (Noah, Mosaic, Sacramento Soil Moisture Accounting (SAC-SMA), and Variable Infiltration Capacity (VIC) models) and their ensemble mean. Comparisons are made against 28-years (1 October 1979-30 September 2007) of United States Geological Survey observed streamflow for 961 small basins and 8 major basins over the conterminous United States (CONUS). Relative bias, anomaly correlation and Nash-Sutcliffe Efficiency (NSE) statistics at daily to annual time scales are used to assess model-simulated streamflow. The Noah (the Mosaic) model overestimates (underestimates) mean annual runoff and underestimates (overestimates) mean annual evapotranspiration. The SAC-SMA and VIC models simulate the mean annual runoff and evapotranspiration well when compared with the observations. The ensemble mean is closer to the mean annual observed streamflow for both the 961 small basins and the 8 major basins than is the mean from any individual model. All of the models, as well as the ensemble mean, have large daily, weekly, monthly, and annual streamflow anomaly correlations for most basins over the CONUS, implying strong simulation skill. However, the daily, weekly, and monthly NSE analysis results are not necessarily encouraging, in particular for daily streamflow. The Noah and Mosaic models are useful (NSE > 0.4) only for about 10% of the 961 small basins, the SAC-SMA and VIC models are useful for about 30% of the 961 small basins, and the ensemble mean is useful for about 42% of the 961 small basins. As the time scale increases, the NSE increases as expected. However, even for monthly streamflow, the ensemble mean is useful for only 75% of the 961 small basins.
This study assesses the hydrologic performance of four land surface models (LSMs) for the conterminous United States using the North American Land Data Assimilation System (NLDAS) test bed. The four LSMs are the baseline community Noah LSM (Noah, version 2.8), the Variable Infiltration Capacity (VIC, version 4.0.5) model, the substantially augmented Noah LSM with multiparameterization options (hence Noah-MP), and the Community Land Model version 4 (CLM4). All four models are driven by the same NLDAS-2 atmospheric forcing. Modeled terrestrial water storage (TWS), streamflow, evapotranspiration (ET), and soil moisture are compared with each other and evaluated against the identical observations. Relative to Noah, the other three models offer significant improvements in simulating TWS and streamflow and moderate improvements in simulating ET and soil moisture. Noah-MP provides the best performance in simulating soil moisture and is among the best in simulating TWS, CLM4 shows the best performance in simulating ET, and VIC ranks the highest in performing the streamflow simulations. Despite these improvements, CLM4, Noah-MP, and VIC exhibit deficiencies, such as the low variability of soil moisture in CLM4, the fast growth of spring ET in Noah-MP, and the constant overestimation of ET in VIC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.