In patients with implanted rotary pumps, the arterial pressure pulsatility is usually far lower than in normal individuals. Depending on the remaining degree of pulsatility, cuff-based systems such as the classical Riva-Rocci-determination of arterial blood pressure and correlated sounds or pressure measurements based on cuffpressure oscillations become inaccurate or even impossible. Therefore, a system was developed which evaluates the flow in the radial artery using an ultrasound wristwatch sensor, and this additional information is used for pressure determination. A computerized data acquisition and cuff-control system based on a PC using Matlab software, a wristwatch ultrasound device, and a compressor-driven pressure cuff was set up. The cuff was controlled for automatic inflation and deflation cycles. Cuff pressure and arterial flow was recorded. Several algorithm strategies were developed, which gave data for systolic blood pressure and heart rate together with a reliability index for data quality. Finally, the new algorithms were implemented in a microcontroller system. Comparisons with invasive measurements showed excellent correlation with systolic blood pressure (mean deltaP -0.3 mm Hg, n = 28). During exercise of rotary pump patients and therefore enhanced pulsatility the difference from manual evaluation was -2.1 mm Hg (n = 18). In conclusion, adaptation of the classical cuff-pressure method with ultrasound evaluation of peripheral flow allows reliable determination of blood pressure in patients with low pulsatility resulting from implanted rotary cardiac assist pumps. By development of a wristwatch sensor and an automatic control system a robust method for daily use could be developed.
To be able to salvage heart failure patients, the need for an economical permanent ventricular assist device is increasing. To meet this increasing demand, a miniaturized centrifugal blood pump has been developed as a permanently implantable device. The Gyro permanently implantable model (PI-601) incorporates a sealless design with a blood stagnation free structure. The pump impeller is magnetically coupled to the driver magnet in a sealless manner. This pump is atraumatic and antithrombogenic and incorporates a double pivot bearing system. A miniaturized actuator was utilized in this system in collaboration with the University of Vienna. The priming volume of this pump is 20 ml. The overall size of the pump actuator package is 53 mm in height and 65 mm in diameter, 145 ml of displacement volume, and 305 g in weight. Testing to date has included in vitro hydraulic performance and hemolysis. This pump can provide 5 L/min against a 110 mm Hg total pressure head at 2,000 rpm and 8 L/min against 150 mm Hg at 2,500 rpm. The normalized index of hemolysis (NIH) value of this pump was 0.0028 g/100 L at 5 L/min against 100 mm Hg. A preliminary anatomical study revealed the possibility of the implantability of 2 such systems in biventricular bypass at a preperitoneal location. This system is feasible for use as a permanently implantable biventricular assist device.
As the clinical application of LVADs has increased, attempts have been made to develop smaller, less expensive, more durable and efficient implantable devices using rotary blood pumps. Since chronic circulatory support with implantable continuous-flow LVADs will be established in the near future, we need to determine the flow characteristics through an implantable continuous-flow LVAD. This study describes the flow characteristics through an implantable centrifugal blood pump as a left ventricular assist device (LVAD) to obtain a simple non-invasive algorithm to control its assist flow rate adequately. A prototype of the completely seal-less and pivot bearing-supported centrifugal blood pump was implanted into two calves, bypassing from the left ventricle to the descending aorta. Device motor speed, voltage, current, flow rate, and aortic blood pressure were monitored continuously. The flow patterns revealed forward flow in ventricular systole and backward flow in diastole. As the pump speed increased, an end-diastolic notch became evident in the flow profile. Although the flow rate (Q [l/min]) and rotational speed (R [rpm]) had a linear correlation (Q = 0.0042R - 5.159; r = 0.96), this linearity was altered after the end-diastolic notch was evident. The end-diastolic notch is considered to be a sign of the sucking phenomenon of the centrifugal pump. Also, although the consumed current (I [A]) and flow rate had a linear correlation (I = 0.212Q + 0.29; r = 0.97), this linearity also changed after the end-diastolic notch was evident. Based upon the above findings, we propose a simple algorithm to maintain submaximal flow without inducing sucking. To maintain the submaximal flow rate without measuring flow rate, the sucking point is determined by monitoring consumed current according to gradual increases in voltage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.