It is significant to improve the accuracy of estimating the state of charge (SOC) of lithium-ion batteries under different working conditions on urban roads. In this study, an improved second-order polarized equivalent circuit (SO-PEC) modeling method is proposed. Accuracy test using segmented parallel exponential fitting parameter identification method. Online parameter identification using recursive least squares with variable forgetting factors(VFFRLS). An optimized higher-order term compensation-adaptive extended Kalman filter (HTC-AEKF) is proposed in the process of estimating SOC. The algorithm incorporates a noise-adaptive algorithm that introduces noise covariance into the recursive process in real-time to reduce the impact of process noise and observation noise on the accuracy of SOC estimation. Multiple iterations are performed for some of the processes in the extended Kalman filter(EKF) to compensate for the accuracy impact of missing higher-order terms in the linearization process. Model validation results show over 98% accuracy. The results after comparing with the EKF algorithm show a 4.1% improvement in SOC estimation accuracy under Hybrid Pulse Power Characterization(HPPC) working conditions. 2.7% improvement in accuracy in Dynamic Stress Test(DST) working conditions. 2.1% improvement in Beijing Bus Dynamic Stress Test(BBDST) working conditions. The superiority of the algorithm is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.