Key points• Several biochemical measures of mitochondrial components are used as biomarkers of mitochondrial content and muscle oxidative capacity. However, no studies have validated these surrogates against a morphological measure of mitochondrial content in human subjects.• The most commonly used markers (citrate synthase activity, cardiolipin content, mitochondrial DNA content (mtDNA), complex I-V protein, and complex I-IV activity) were correlated with a measure of mitochondrial content (transmission electron microscopy) and muscle oxidative capacity (respiration in permeabilized fibres).• Cardiolipin content followed by citrate synthase activity and complex I activity were the biomarkers showing the strongest association with mitochondrial content.• mtDNA was found to be a poor biomarker of mitochondrial content.• Complex IV activity was closely associated with mitochondrial oxidative phosphorylation capacity.Abstract Skeletal muscle mitochondrial content varies extensively between human subjects. Biochemical measures of mitochondrial proteins, enzyme activities and lipids are often used as markers of mitochondrial content and muscle oxidative capacity (OXPHOS). The purpose of this study was to determine how closely associated these commonly used biochemical measures are to muscle mitochondrial content and OXPHOS. Sixteen young healthy male subjects were recruited for this study. Subjects completed a graded exercise test to determine maximal oxygen uptake (V O 2 peak ) and muscle biopsies were obtained from the vastus lateralis. Mitochondrial content was determined using transmission electron microscopy imaging and OXPHOS was determined as the maximal coupled respiration in permeabilized fibres. Biomarkers of interest were citrate synthase (CS) activity, cardiolipin content, mitochondrial DNA content (mtDNA), complex I-V protein content, and complex I-IV activity. Spearman correlation coefficient tests and Lin's concordance tests were applied to assess the absolute and relative association between the markers and mitochondrial content or OXPHOS. Subjects had a large range ofV O 2 peak (range 29.9-71.6 ml min −1 kg −1 ) and mitochondrial content (4-15% of cell volume). Cardiolipin content showed the strongest association with mitochondrial content followed by CS and complex I activities. mtDNA was not related to mitochondrial content. Complex IV activity showed the strongest association with muscle oxidative capacity followed by complex II activity. We conclude that cardiolipin content, and CS and complex I activities are the biomarkers that exhibit the strongest association with mitochondrial content, while complex IV activity is strongly associated with OXPHOS capacity in human skeletal muscle.
Peroxisome proliferator-activated receptors (PPARs) are pleiotropic regulators of growth and differentiation of many cell types. We have performed a comprehensive analysis of the expression of PPARs, transcriptional cofactors, and marker genes during differentiation of normal human keratinocytes using a combination of reverse transcriptase polymerase chain reaction, Northern and Western blotting, and immunohistochemistry. PPARdelta was the predominant PPAR subtype in human keratinocytes and highly expressed in basal cells and suprabasal cells. Induction of PPARalpha and PPARgamma expression was linked to differentiation, and accordingly, expression of PPARalpha and PPARgamma was in essence confined to suprabasal cells. Differentiation was not accompanied by significant changes in the expression of the coactivators CREB-binding protein, p300, steroid receptor coactivator 1, or the corepressors nuclear receptor corepressor and silence mediator for retinoid and thyroid hormone receptors. We critically evaluated the effects of selective PPAR ligands and a synthetic fatty acid analog, tetradecylthioacetic acid. Tetradecylthioacetic acid activated all human PPAR subtypes in the ranking order PPARdelta >> PPARalpha > PPARgamma. All selective PPAR ligands marginally induced transglutaminase-1 expression with the PPARdelta-selective ligand L165041 being the most potent. The PPARalpha- and PPARgamma-selective ligands Wy14643 and BRL49653 had negligible effect on involucrin expression, whereas a dose-dependent induction was observed with L165041. Simultaneous addition of L165041 and BRL49653 synergistically induced strong involucrin expression. Additionally, L165041 potently induced CD36 mRNA expression. Administration of tetradecylthioacetic acid resulted in a dramatic decrease in proliferation and a robust upregulation of the expression of involucrin and transglutaminase. Our results indicate that tetradecylthioacetic acid may affect keratinocyte gene expression and differentiation via PPAR-dependent and PPAR-independent pathways, and that the latter play an important role.
Ørtenblad N. Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab 298: E706 -E713, 2010. First published December 22, 2009; doi:10.1152/ajpendo.00692.2009.-The purpose of the study was to investigate the effect of aerobic training and type 2 diabetes on intramyocellular localization of lipids, mitochondria, and glycogen. Obese type 2 diabetic patients (n ϭ 12) and matched obese controls (n ϭ 12) participated in aerobic cycling training for 10 wk. Endurance-trained athletes (n ϭ 15) were included for comparison. Insulin action was determined by euglycemic-hyperinsulinemic clamp. Intramyocellular contents of lipids, mitochondria, and glycogen at different subcellular compartments were assessed by transmission electron microscopy in biopsies obtained from vastus lateralis muscle. Type 2 diabetic patients were more insulin resistant than obese controls and had threefold higher volume of subsarcolemmal (SS) lipids compared with obese controls and endurance-trained subjects. No difference was found in intermyofibrillar lipids. Importantly, following aerobic training, this excess SS lipid volume was lowered by ϳ50%, approaching the levels observed in the nondiabetic subjects. A strong inverse association between insulin sensitivity and SS lipid volume was found (r 2 ϭ0.62, P ϭ 0.002). The volume density and localization of mitochondria and glycogen were the same in type 2 diabetic patients and control subjects, and showed in parallel with improved insulin sensitivity a similar increase in response to training, however, with a more pronounced increase in SS mitochondria and SS glycogen than in other localizations. In conclusion, this study, estimating intramyocellular localization of lipids, mitochondria, and glycogen, indicates that type 2 diabetic patients may be exposed to increased levels of SS lipids. Thus consideration of cell compartmentation may advance the understanding of the role of lipids in muscle function and type 2 diabetes. cell compartmentation; transmission electron microscopy; insulin sensitivity INTRAMYOCELLULAR LIPID (IMCL) accumulation in skeletal muscle of humans has been related to impaired insulin sensitivity (20,30). The causality has been challenged by reports of increased IMCL levels in endurance-trained athletes compared with untrained (8) and higher IMCL levels in women than in men without concomitant differences in insulin sensitivity (11,17). Thus many have suggested that high IMCL levels per se do not influence insulin sensitivity but represent a marker of increased fatty acid metabolites such as diacylglycerol (DAG), ceramide, and long-chain acyl-CoAs, which in turn could be detrimental for insulin sensitivity (17,28,31).However, evaluation of the role of IMCL in subcellular fractions has not been considered in previous studies (8,11,20,30). The muscle cell consists mainly of contractile filaments arranged in myofibrils with mitochondria, lipids, gly...
When implanted into immunodeficient mice, human embryonic stem cells (hESCs) give rise to teratoma, tumor-like formations containing tissues belonging to all three germ layers. The ability to form teratoma is a sine qua non characteristic of pluripotent stem cells. However, limited data are available regarding the effects of implantation site and the methods employed for implantation on the success rate of teratoma formation. In this study, the rate of teratoma formation in immunodeficient mice was site dependent: subcutaneous (25-100%), intratesticular (60%), intramuscular (12.5%), and under the kidney capsule (100%). Co-injecting the hESCs with Matrigel increased subcutaneous teratoma formation efficiency from 25-40% to 80-100%. We did not observe site-specific differences in the teratoma composition at the histological level. However, subcutaneous teratomas were quite distinct, easy to remove, and caused minimal discomfort to the mice. Also, subcutaneous teratomas displayed larger proportion of solid tissues as opposed to cyst formation that dominated the teratomas formed at the other sites. Interestingly, a chromosomally abnormal hESCs with trisomy 20 formed teratomas where the ratio of differentiated to undifferentiated tissues was significantly decreased suggesting defective pluripotency of the cells. In conclusion, subcutaneous implantation of hESCs in presence of Matrigel appears to be the most efficient, reproducible, and the easiest approach for teratoma formation by hESCs. Also, teratoma formation can be employed to study the development defects exhibited by the chromosomally abnormal hESC lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.