Brazil's controversial new Forest Code grants amnesty to illegal deforesters, but creates new mechanisms for forest conservation.
Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 ± 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 ± 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation.Amazon Region Protected Areas | effectiveness | reducing emissions from deforestation and forest degradation | simulation model | opportunity cost
Government commitments and market transitions lay the foundation for an effort to save the forest and reduce carbon emission.
Industrial agricultural plantations are a rapidly increasing yet largely unmeasured source of tropical land cover change. Here, we evaluate impacts of oil palm plantation development on land cover, carbon flux, and agrarian community lands in West Kalimantan, Indonesian Borneo. With a spatially explicit land change/carbon bookkeeping model, parameterized using high-resolution satellite time series and informed by socioeconomic surveys, we assess previous and project future plantation expansion under five scenarios. Although fire was the primary proximate cause of 1989-2008 deforestation (93%) and net carbon emissions (69%), by 2007-2008, oil palm directly caused 27% of total and 40% of peatland deforestation. Plantation land sources exhibited distinctive temporal dynamics, comprising 81% forests on mineral soils (1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001), shifting to 69% peatlands (2008)(2009)(2010)(2011). Plantation leases reveal vast development potential. In 2008, leases spanned ∼65% of the region, including 62% on peatlands and 59% of community-managed lands, yet <10% of lease area was planted. Projecting business as usual (BAU), by 2020 ∼40% of regional and 35% of community lands are cleared for oil palm, generating 26% of net carbon emissions. Intact forest cover declines to 4%, and the proportion of emissions sourced from peatlands increases 38%. Prohibiting intact and logged forest and peatland conversion to oil palm reduces emissions only 4% below BAU, because of continued uncontrolled fire. Protecting logged forests achieves greater carbon emissions reductions (21%) than protecting intact forests alone (9%) and is critical for mitigating carbon emissions. Extensive allocated leases constrain land management options, requiring trade-offs among oil palm production, carbon emissions mitigation, and maintaining community landholdings.greenhouse gas emissions | agribusiness | Elaeis guineensis | moratorium | REDD+ G lobal demand for food, biofuels, and natural resources drives capitalized agricultural development, especially for tropical plantations (1-4). Forest and peatland conversion to plantation agriculture may be a substantial source of greenhouse gas (GHG) emissions from land cover change (5, 6), which generates 10-20% of net global GHG emissions (7). By acquiring extensive arable lands, plantations also affect land availability for smallholder farmers and communities, potentially altering local livelihood options (8, 9). Whereas environmental degradation from tropical agribusiness may overwhelm benefits of high-yield plantations for world food security (6, 10), impacts on carbon (C) flux and livelihoods are highly uncertain because locations and land sources for plantations remain largely undocumented.Complex processes of land acquisition and plantation development unfold across heterogeneous biophysical and sociopolitical landscapes in both time and space. Land cover histories constrain present land use and potential outcomes from agribusiness expansion (11). Discerning the land cover traje...
Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.climate change | land-use planning | electricity | climate policy | forest policy T ropical rainforests are globally significant because of their cultural and biological diversity (1), their productivity (2), and their enormous carbon pools (3). The abundant rainfall that has allowed these ecosystems to develop is also associated with large volumes of river water flow and high potential for the generation of electricity through hydropower dams. As a result of this confluence of rainforests and hydropower potential, many nations with large areas of tropical rainforest-including Brazil, Peru, Colombia, the Democratic Republic of the Congo, Vietnam, and Malaysia-plan to expand their hydropower energy capacity over the next 20 y (4, 5).Hydropower is an attractive energy option for many reasons. It is cheaper than thermoelectric power and most other renewable forms of electricity (6), can provide energy at scale more easily and with fewer disruptions than wind or solar (6), and can potentially provide electrical energy with lower levels of greenhouse gas (GHG) emissions than thermoelectric energy (7), although its effect on methane production could counteract this benefit (8). As with any energy source, hydropower also brings important social and ecological costs. Dam construction and flooding that often accompanies reservoir establishment can negatively affe...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.