Neuropilin (Nrp) is a cell surface receptor with essential roles in angiogenesis and axon guidance. Interactions between Nrp and the positively charged C termini of its ligands, VEGF and semaphorin, are mediated by Nrp domains b1 and b2, which share homology to coagulation factor domains. We report here the crystal structure of the tandem b1 and b2 domains of Nrp-1 (N1b1b2) and show that they form a single structural unit. Cocrystallization of N1b1b2 with Tuftsin, a peptide mimic of the VEGF C terminus, reveals the site of interaction with the basic tail of VEGF on the b1 domain. We also show that heparin promotes N1b1b2 dimerization and map the heparin binding site on N1b1b2. These results provide a detailed picture of interactions at the core of the Nrp signaling complex and establish a molecular basis for the synergistic effects of heparin on Nrp-mediated signaling.semaphorin ͉ Tuftsin ͉ VEGF N europilins (Nrps) are essential cell surface receptors with central roles in both angiogenesis and axon guidance (1-3). During angiogenesis, Nrp directly binds VEGF and functions as a coreceptor for VEGF along with VEGF receptor (VEGFR)-2, one of the three VEGFR tyrosine kinases (3, 4). During neural development, Nrp directly binds semaphorin and functions as a semaphorin coreceptor with members of the plexin family (5). Additionally, interactions with both neural adhesion protein L1 and Nrp-interacting protein (NIP), have been shown to be involved in a variety of other cellular processes (6-8).Nrp plays a stimulatory role in angiogenesis, a process critical for growth of solid tumors (reviewed in refs. 4 and 9-11). Nrp expression is observed in tumor vasculature, and overexpression promotes tumorigenesis in vivo for a variety of solid tumors including pituitary, prostate, breast, and colon cancers (12-15). In contrast, a soluble splice form containing only part of the extracellular domain of Nrp inhibits tumorigenesis (16) as do a number of peptides that block VEGF binding to Nrp (17,18). Recent evidence has also demonstrated a role for Nrp in hematological malignancies. Nrp overexpression is observed in both multiple myeloma and acute myeloid leukemia and, in the latter case, is associated with significantly reduced survival (19,20). Strategies to inhibit Nrp activity are thus being developed as potential antitumor therapies (reviewed in ref. 11).Higher eukaryotes possess two Nrp homologs, Nrp-1 and Nrp-2, which share 44% amino acid sequence identity (1). Nrp extracellular regions are composed of two complement binding CUB domains (a1 and a2) followed by two coagulation factor domains (b1 and b2), a MAM (meprin, A5, ) domain (c1), a single membrane-spanning region, and a short cytoplasmic tail (Fig. 1A) (21, 22). The a1 and a2 domains of Nrp are essential for binding to the core seven-bladed Sema domain of semaphorin as well as contributing to interactions with VEGF (23, 24). The coagulation factor domains b1 and b2 contain the high-affinity binding site for the basic heparin binding domain (HBD) of VEGF165 as well a...
SHP-1 belongs to the family of non-receptor protein tyrosine phosphatases (PTPs) and generally acts as a negative regulator in a variety of cellular signaling pathways. Previously the crystal structures of the tail-truncated SHP-1 and SHP-2 revealed an autoinhibitory conformation. To understand the regulatory mechanism of SHP-1, we have determined the crystal structure of the full length SHP-1 at 3.1 Å. Although the tail was disordered in current structure, the huge conformational rearrangement of the N-SH2 domain and the incorporation of sulfate ions into the ligand-binding site of each domain indicate that the SHP-1 is in the open conformation. The N-SH2 domain in current structure is shifted away from the active site of the PTP domain to the other side of the C-SH2 domain, resulting in exposure of the active site. Meanwhile, the C-SH2 domain is twisted anticlockwise by about 110°. In addition, a set of new interactions between two SH2 domains and between the N-SH2 and the catalytic domains is identified, which could be responsible for the stabilization of SHP-1 in the open conformation. Based on the structural comparison, a model for the activation of SHP-1 is proposed.
The structure of flavocytochrome b2 from baker's yeast was solved at 3.0-A resolution by the multiple isomorphous replacement method combined with solvent leveling procedures, using data collected from an area detector.
IQGAP1 is a 190-kDa molecular scaffold containing several domains required for interaction with numerous proteins. One domain is homologous to Ras GTPase-activating protein (GAP) domains. However, instead of accelerating hydrolysis of bound GTP on Ras IQGAP1, using its GAP-related domain (GRD) binds to Cdc42 and Rac1 and stabilizes their GTP-bound states. We report here the crystal structure of the isolated IQGAP1 GRD. Despite low sequence conservation, the overall structure of the GRD is very similar to the GAP domains from p120 RasGAP, neurofibromin, and SynGAP. However, instead of the catalytic "arginine finger" seen in functional Ras GAPs, the GRD has a conserved threonine residue. GRD residues 1099 -1129 have no structural equivalent in RasGAP and are seen to form an extension at one end of the molecule. Because the sequence of these residues is highly conserved, this region likely confers a functionality particular to IQGAP family GRDs. We have used isothermal titration calorimetry to demonstrate that the isolated GRD binds to active Cdc42. Assuming a mode of interaction similar to that displayed in the Ras-RasGAP complex, we created an energy-minimized model of Cdc42⅐GTP bound to the GRD. Residues of the GRD that contact Cdc42 map to the surface of the GRD that displays the highest level of sequence conservation. The model indicates that steric clash between threonine 1046 with the phosphate-binding loop and other subtle changes would likely disrupt the proper geometry required for GTP hydrolysis.The small GTPase Ras functions as a binary switch in cell signaling processes. When bound to GTP, Ras is able to interact with effector proteins, including Raf kinase, and alter their activities. Ras signaling is terminated when bound GTP is hydrolyzed to GDP and inorganic phosphate. The basal rate of GTP hydrolysis on Ras is quite slow (ϳ1.2 ϫ 10 Ϫ4 s Ϫ1), but this rate of hydrolysis can be enhanced ϳ10 5 -fold by interaction with a GTPase-activating protein (GAP) 2 (1). Several RasGAPs have been identified to date including p120 RasGAP and neurofibromin (NF1). The Rho family of Ras-related small GTPases also function as binary switches in cell signaling processes. Whereas the intrinsic rate of GTP hydrolysis on Rho proteins is faster than Ras, this rate can also be stimulated by interaction with a RhoGAP. Examination of the structures of the GAP domains of p120RasGAP (2), neurofibromin (3), SynGAP (4), and the GAP domains from the RhoGAPs p50 RhoGAP and the Bcr homology domain of phosphatidylinositol 3-kinase (5, 6) indicates that although ostensibly different, these all-helical domains are structurally related (7).IQGAP1 was discovered by chance during an attempt to isolate novel matrix metalloproteinases (8). Analysis reveals that the protein contains several discrete domains and motifs including a region containing four isoleucine-and glutaminerich motifs (IQ repeats) and a region with sequence homology to the Ras-specific GAP domains of p120RasGAP, NF1, and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.