SummaryBackgroundUnderweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults.MethodsWe pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5–19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5–19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity).FindingsRegional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (−0·01 kg/m2 per decade; 95% credible interval −0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69–1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64–1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (−0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50–1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4–1·2) in 1975 to 5·6% (4·8–6·5) in 2016 in girls, and from 0·9% (0·5–1·3) in 1975 to 7·8% (6·7–9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0–12·9) in 1975 to 8·4% (6·8–10·1) in 2016 in girls and from 14·8% (10·4–19·5) in 1975 to 12·4% (10·3–14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7–29·6) among girls and 30·7% (23·5–38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44–117) million girls and 117 (70–178) million boys wor...
Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association (GWA) meta-analysis based in 135,458 cases and 344,901 control, We identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression, and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relations of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine and define the basis of major depression and imply a continuous measure of risk underlies the clinical phenotype.
Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explain one-fifth of heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ~2,000, ~3,700 and ~9,500 SNPs explained ~21%, ~24% and ~29% of phenotypic variance. Furthermore, all common variants together captured the majority (60%) of heritability. The 697 variants clustered in 423 loci enriched for genes, pathways, and tissue-types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin, and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence phenotype. Genome-wide association (GWA) studies have identified >600 variants associated with human traits1, but these typically explain small fractions of phenotypic variation, raising questions about the utility of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P=0.016), and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants, and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented amongst variants that alter amino acid structure of proteins and expression levels of nearby genes. Our data explain ∼10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to ∼16% of phenotypic variation (∼20% of heritable variation). Although additional approaches are needed to fully dissect the genetic architecture of polygenic human traits, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
SummaryEducational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.