Some evidence suggests that bone health can be regulated by gut microbiota. To better understand this, we performed 16S ribosomal RNA sequencing to analyze the intestinal microbial diversity in primary osteoporosis (OP) patients, osteopenia (ON) patients and normal controls (NC). We observed an inverse correlation between the number of bacterial taxa and the value of bone mineral density. The diversity estimators in the OP and ON groups were increased compared with those in the NC group. Beta diversity analyses based on hierarchical clustering and principal coordinate analysis (PCoA) could discriminate the NC samples from OP and ON samples. Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria constituted the four dominant phyla in all samples. Proportion of Firmicutes was significantly higher and Bacteroidetes was significantly lower in OP samples than that in NC samples (p < 0.05), Gemmatimonadetes and Chloroflexi were significantly different between OP and NC group as well as between ON and NC group (p < 0.01). A total of 21 genera with proportions above 1% were detected and Bacteroides accounted for the largest proportion in all samples. The Blautia, Parabacteroides and Ruminococcaceae genera differed significantly between the OP and NC group (p < 0.05). Linear discriminant analysis (LDA) results showed one phylum community and seven phylum communities were enriched in ON and OP, respectively. Thirty-five genus communities, five genus communities and two genus communities were enriched in OP, ON and NC, respectively. The results of this study indicate that gut microbiota may be a critical factor in osteoporosis development, which can further help us search for novel biomarkers of gut microbiota in OP and understand the interaction between gut microbiota and bone health.
BackgroundReception of and response to exogenous and endogenous osmotic changes is important to sustain plant growth and development, as well as reproductive formation. Hyperosmolality-gated calcium-permeable channels (OSCA) were first characterised as an osmosensor in Arabidopsis and are involved in the perception of extracellular changes to trigger hyperosmolality-induced [Ca2+]i increases (OICI). To explore the potential biological functions of OSCAs in rice, we performed a bioinformatics and expression analysis of the OsOSCA gene family.ResultsA total of 11 OsOSCA genes were identified from the genome database of Oryza sativa L. Japonica. Based on their sequence composition and phylogenetic relationship, the OsOSCA family was classified into four clades. Gene and protein structure analysis indicated that the 11 OsOSCAs shared similar structures with their homologs in Oryza sativa L. ssp. Indica, Oryza glaberrima, and Oryza brachyantha. Multiple sequence alignment analysis revealed a conserved DUF221 domain in these members, in which the first three TMs were conserved, while the others were not. The expression profiles of OsOSCA genes were analysed at different stages of vegetative growth, reproductive development, and under osmotic-associated abiotic stresses. We found that four and six OsOSCA genes showed a clear correlation between the expression profile and osmotic changes during caryopsis development and seed imbibition, respectively. Orchestrated transcription of three OsOSCAs was strongly associated with the circadian clock. Moreover, osmotic-related abiotic stress differentially induced the expression of 10 genes.ConclusionThe entire OSCA family is characterised by the presence of a conserved DUF221 domain, which functions as an osmotic-sensing calcium channel. The phylogenetic tree of OSCA genes showed that two subspecies of cultivated rice, Oryza sativa L. ssp. Japonica and Oryza sativa L. ssp. Indica, are more closely related than wild rice Oryza glaberrima, while Oryza brachyantha was less closely related. OsOSCA expression is organ- and tissue-specific and regulated by different osmotic-related abiotic stresses in rice. These findings will facilitate further research in this gene family and provide potential target genes for generation of genetically modified osmotic-stress-resistant plants.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0653-8) contains supplementary material, which is available to authorized users.
The incidence of esophageal adenocarcinoma (EAC) has increased in recent decades, and its 5-year survival rate is less than 20%. As a well-established precursor, patients with Barrett's esophagus (BE) have a persistent risk of progression to EAC. Many researchers have already identified some factors that may contribute to the development of BE and EAC, and the identified risks include gastroesophageal reflux (GER), male sex, older age, central obesity, tobacco smoking, Helicobacter pylori ( H. pylori ) eradication, and the administration of proton pump inhibitors (PPIs) and antibiotics. The human gut harbors trillions of microorganisms, the majority of which are bacteria. These microorganisms benefit the human host in many ways, such as helping in digestion, assisting in the synthesis of certain vitamins, promoting the development of the gastrointestinal immune system, regulating metabolism and preventing invasion by specific pathogens. In contrast, microbial dysbiosis may play important roles in various diseases, such as inflammation and cancers. The composition of the microbiota located in the normal esophagus is relatively conserved without distinct microbial preferences in the upper, middle and lower esophagus. Six major phyla constitute the esophageal microbiota, including Firmicutes , Bacteroides , Actinobacteria , Proteobacteria , Fusobacteria and TM7 , similar to the oral microbiota. Streptococcus dominates the esophageal microbiota. However, the microbiota varies in different esophageal diseases compared to that in the healthy esophagus. The type I microbiota, which is primarily composed of gram-positive bacteria, is closely associated with the normal esophagus, while type II microbiota has enriched gram-negative bacteria and is mainly associated with the abnormal esophagus. These increased gram-negative anaerobes/microaerophiles include Veillonella , Prevotella , Haemophilus , Neisseria , Granulicatella and Fusobacterium , many of which are associated with BE. The microbial diversity in the esophagus is decreased in EAC patients, and Lactobacillus fermentum is enriched compared to that in controls and BE patients. Furthermore, the microbiota may be associated with BE and EAC by interacting with their risk factors, including central obesity, GER, H. pylori , administration of PPIs and antibiotics. Therefore, a large gap in research must be bridged to elucidate the associations among these factors. Some studies have already proposed several potential mechanisms by which the microbiota participates in human carcinogenesis by complicated interactions with the human host immune system and signaling pathways. The activa...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.