Serum concentrations of total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with serum lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 × 10-8), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (e.g., CYP7A1, NPC1L1, and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and impact lipid traits in three non-European populations (East Asians, South Asians, and African Americans). Our results identify several novel loci associated with serum lipids that are also associated with CAD. Finally, we validated three of the novel genes—GALNT2, PPP1R3B, and TTC39B—with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes.
Socioeconomic status (SES) has a measurable and significant effect on cardiovascular health. Biological, behavioral, and psychosocial risk factors prevalent in disadvantaged individuals accentuate the link between SES and cardiovascular disease (CVD). Four measures have been consistently associated with CVD in high-income countries: income level, educational attainment, employment status, and neighborhood socioeconomic factors. In addition, disparities based on sex have been shown in several studies. Interventions targeting patients with low SES have predominantly focused on modification of traditional CVD risk factors. Promising approaches are emerging that can be implemented on an individual, community, or population basis to reduce disparities in outcomes. Structured physical activity has demonstrated effectiveness in low-SES populations, and geomapping may be used to identify targets for large-scale programs. Task shifting, the redistribution of healthcare management from physician to nonphysician providers in an effort to improve access to health care, may have a role in select areas. Integration of SES into the traditional CVD risk prediction models may allow improved management of individuals with high risk, but cultural and regional differences in SES make generalized implementation challenging. Future research is required to better understand the underlying mechanisms of CVD risk that affect individuals of low SES and to determine effective interventions for patients with high risk. We review the current state of knowledge on the impact of SES on the incidence, treatment, and outcomes of CVD in high-income societies and suggest future research directions aimed at the elimination of these adverse factors, and the integration of measures of SES into the customization of cardiovascular treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.