Phasins are a group of proteins associated to granules of polyhydroxyalkanoates (PHAs). Apart from their structural role as part of the PHA granule cover, different structural and regulatory functions have been found associated to many of them, and several biotechnological applications have been developed using phasin protein fusions. Despite their remarkable functional diversity, the structure of these proteins has not been analyzed except in very few studies. PhaP from Azotobacter sp. FA8 (PhaPAz) is a representative of the prevailing type in the multifunctional phasin protein family. Previous work performed in our laboratory using this protein have demonstrated that it has some very peculiar characteristics, such as its stress protecting effects in recombinant Escherichia coli, both in the presence and absence of PHA. The aim of the present work was to perform a structural characterization of this protein, to shed light on its properties. Its aminoacid composition revealed that it lacks clear hydrophobic domains, a characteristic that appears to be common to most phasins, despite their lipid granule binding capacity. The secondary structure of this protein, consisting of α-helices and disordered regions, has a remarkable capacity to change according to its environment. Several experimental data support that it is a tetramer, probably due to interactions between coiled-coil regions. These structural features have also been detected in other phasins, and may be related to their functional diversity.
It is now clear that proteins are flexible entities that in solution switch between conformations to achieve their function. Hydrogen/Deuterium Exchange Mass Spectrometry (HX/MS) is an invaluable tool to understand dynamic changes in proteins modulated by cofactor binding, post-transductional modifications, or protein-protein interactions. ERK2MAPK, a protein involved in highly conserved signal transduction pathways of paramount importance for normal cellular function, has been extensively studied by HX/MS. Experiments of the ERK2MAPK in the inactive and active states (in the presence or absence of bound ATP) have provided valuable information on the plasticity of the MAPK domain. However, interpretation of the HX/MS data is difficult, and changes are mostly explained in relation to available X-ray structures, precluding a complete atomic picture of protein dynamics. In the present work, we have used all atom Molecular Dynamics simulations (MD) to provide a theoretical framework for the interpretation of HX/MS data. Our results show that detailed analysis of protein-solvent interaction along the MD simulations allows (i) prediction of the number of protons exchanged for each peptide in the HX/MS experiments, (ii) rationalization of the experimentally observed changes in exchange rates in different protein conditions at the residue level, and (iii) that at least for ERK2MAPK, most of the functionally observed differences in protein dynamics are related to what can be considered the native state conformational ensemble. In summary, the combination of HX/MS experiments with all atom MD simulations emerges as a powerful approach to study protein native state dynamics with atomic resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.