FeFe hydrogenases are the most efficient H2 producing enzymes, but inactivation by O2 is an obstacle to using them in biotechnological devices. Here we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We find that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of the highly reactive OH radical and hydroxylated cysteine, consistent with recent crystallographic evidence. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species at prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.