Spinal cord paralysis is relatively common after surgical repair of thoraco-abdominal aortic aneurysm (TAAA) and its etiology is unknown. The present study was designed to examine the histopathology of the disease and investigate whether miR-155 ablation would reduce spinal cord ischemic damage and delayed hindlimb paralysis induced by aortic cross-clamping (ACC) in our mouse model. The loss of locomotor function in ACC-paralyzed mice correlated with the presence of extensive gray matter damage and central cord edema, with minimal white matter histopathology. qRTPCR and Western blotting showed that the spinal cords of wild-type ACC mice that escaped paralysis showed lower miR-155 expression and higher levels of transcripts encoding Mfsd2a, which is implicated in the maintenance of blood-brain barrier integrity. In situ based testing demonstrated that increased miR-155 detection in neurons was highly correlated with the gray matter damage and the loss of one of its targets, Mfsd2a, could serve as a good biomarker of the endothelial cell damage. In vitro, we demonstrated that miR-155 targeted Mfsd2a in endothelial cells and motoneurons and increased endothelial cell permeability. Finally, miR-155 ablation slowed the progression of central cord edema, and reduced the incidence of paralysis by 40%. In sum, the surgical pathology findings clearly indicated that the epicenter of the ischemic-induced paralysis was the gray matter and that endothelial cell damage correlated to Mfsd2a loss is a good biomarker of the disease. MiR-155 targeting therefore offers new therapeutic opportunity for edema caused by traumatic spinal cord injury and diagnostic pathologists, by using immunohistochemistry, can clarify if this mechanism also is important in other ischemic diseases of the CNS, including stroke.
Exciting advances are revealing that breast milk harbors populations of stem and progenitor cells, and much attention is now intensified on delineating their properties and functions. The aim of this study is to isolate a mesenchymal stem cell (MSC)-like population from rabbit breast milk and track their integration into the different organs of the breastfed rabbits after taken by oral route and to explore the functional role of stem cells in the breastfed newborn babies. Ten newborn rabbits 2 weeks old fed on 2 × 10 PKH26-labeled rabbit milk derived-MSCs suspended in 2 mL Dulbecco's modified Eagle's medium (DMEM) and 10 newborn baby rabbits fed with 2 mL DMEM solution or with rabbit fibroblasts as a control group were used in the study. All rabbits were sacrificed after 1 week. We found that PKH26-labeled MSCs were engrafted into the offspring organs as liver, cartilage, bone and duodenum. Histologically, there was proliferation of cells in some organs. Moreover, there was overexpression of both PCNA and cyclin D1 genes in all organs from milk derived MSCs fed rabbits compared to the control group. Our results confirmed the presence of MSC-like population in the breast milk. We first showed that milk derived-MSCs were engrafted into the offspring organs when were taken orally. Milk derived-MSCs may elucidate the functional benefits to the newborn babies by increasing cell proliferation and growth. © 2016 IUBMB Life, 68(12):935-942, 2016.
Autophagy is a proposed route of amyloid-β (Aβ) clearance by microglia that is halted in Alzheimer’s Disease (AD), though mechanisms underlying this dysfunction remain elusive. Here, primary microglia from adult AD (5xFAD) mice were utilized to demonstrate that 5xFAD microglia fail to degrade Aβ and express low levels of autophagy cargo receptor NBR1. In 5xFAD mouse brains, we show for the first time that AD microglia express elevated levels of microRNA cluster Mirc1/Mir17-92a, which is known to downregulate autophagy proteins. By in situ hybridization in post-mortem AD human tissue sections, we observed that the Mirc1/Mir17-92a cluster member miR-17 is also elevated in human AD microglia, specifically in the vicinity of Aβ deposits, compared to non-disease controls. We show that NBR1 expression is negatively correlated with expression of miR-17 in human AD microglia via immunohistopathologic staining in human AD brain tissue sections. We demonstrate in healthy microglia that autophagy cargo receptor NBR1 is required for Aβ degradation. Inhibiting elevated miR-17 in 5xFAD mouse microglia improves Aβ degradation, autophagy, and NBR1 puncta formation in vitro and improves NBR1 expression in vivo. These findings offer a mechanism behind dysfunctional autophagy in AD microglia which may be useful for therapeutic interventions aiming to improve autophagy function in AD.
The World Health Organization has recently introduced molecular prognostic-diagnostic biomarkers in the classification of Central Nervous System (CNS) tumors. In order to characterize subclasses of tumors that cannot find a precise location in the current classification, and, or cannot be tested because of scant material, it is important to find new molecular biomarkers in tissue and, or biological fluid samples. In this study, we identified serum microRNAs that could serve as biomarkers for the diagnosis and prognosis of patients with tumors of glial origin. We retrospectively analyzed microRNA expression in the serum extracellular vesicles of patients with tumors of glial origin. Extracellular vesicles RNA was analyzed by Nanostring. qRT-PCR confirmed 6 overexpressed microRNAs: hsa-miR-4443, hsa-miR-422a, hsa-miR-494-3p, hsa-miR-502-5p, hsa-miR-520f-3p, and hsa-miR-549a. Hsa-miR-4443 was the only microRNA that showed significant differences in most comparisons. In situ hybridization (ISH), confirmed that our signature was mostly expressed in cancer cells.Importantly, hsa-miR-549a and hsa-miR-502-5p expression predicted prognosis in patients with tumors of glial origin. Although more studies are needed, we demonstrated that serum vesicles microRNA profiles are promising diagnostic and prognostic molecular biomarkers that will find an actual application in the clinical practice of CNS tumors.
Resveratrol (trans-3,5,4′-trihydroxystilbene, RSV) is a non-flavonoid dietary polyphenol with antioxidant, anti-inflammatory and anti-cancer properties that is primarily found in red berries. While RSV displays many beneficial effects in vitro, its actual effects in vivo or in animal models remain passionately debated. Recent publications suggest that RSV pleiotropic effects could arise from its capability to regulate the expression and activity of microRNAs, short regulators themselves capable of regulating up to several hundreds of target genes. In particular, RSV increases microRNA miR-663 expression in different human cell lines, suggesting that at least some of its multiple beneficial properties are through the modulation of expression of this microRNA. Indeed, the expression of microRNA miR-663 is reduced in certain cancers where miR-663 is considered to act as a tumor suppressor gene, as well as in other pathologies such as cardiovascular disorders. Target of miR-663 include genes involved in tumor initiation and/or progression as well as genes involved in pathologies associated with chronic inflammation. Here, we review the direct and indirect effects of RSV on the expression of miR-663 and its target transcripts, with emphasise on TGFβ1, and their expected health benefits, and argue that elucidating the molecular effects of different classes of natural compounds on the expression of microRNAs should help to identify new therapeutic targets and design new treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.