Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
BackgroundRadiation pneumonitis (RP) and organizing pneumonia (OP) are the two main types of lung damage that can occur after lung irradiation. The goal of this study was to evaluate the relationship between RP and OP after irradiation for breast cancer.MethodsFour hundred and twenty-eight patients who underwent radiotherapy for breast cancer were identified. The whole breast was irradiated with two tangential photon beams. Chest computed tomography (CT) scan were performed when patients showed any symptoms that were suspicious for pneumonitis.ResultsFive patients (1.2%) were diagnosed with OP. All five patients showed ground glass opacities and consolidation of the border of the lesion of RP in the radiation fields. Infiltration of OP spread from the site of RP to the hilum of the ipsilateral lung. Between RP and OP, a free region space (FRS) could be detected.ConclusionsOP is closely related to RP. All OP lesions developed near the site of RP.
The relationship between sleep apnea syndrome (SAS) and posture during sleep has been noted and the beneficial effect of an optimal posture on sleep apnea has been empirically indicated. We investigated this effect in a group of subjects that included obese patients and found that the apnea-hypopnea index (AHI) may be normalized in the lateral position, even among patients severely affected with apnea. Among those with intermediate or lower AHI values, sleeping in a lateral position markedly improved the symptoms, with AHI even approaching the normal range in many patients. A tendency was noted for AHI to rise regardless of posture but in proportion to the increase in body mass index (BMI). In other words, the improvement due to changes in posture became increasingly insignificant with increase in BMI.
Morphological evaluation of the lung is important in the clinical evaluation of pulmonary diseases. However, the disease process, especially in its early phases, may primarily result in changes in pulmonary function without changing the pulmonary structure. In such cases, the traditional imaging approaches to pulmonary morphology may not provide sufficient insight into the underlying pathophysiology. Pulmonary imaging community has therefore tried to assess pulmonary diseases and functions utilizing not only nuclear medicine, but also CT and MR imaging with various technical approaches. In this review, we overview state-of-the art MR methods and the future direction of: (1) ventilation imaging, (2) perfusion imaging and (3) biomechanical evaluation for pulmonary functional imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.