Alcoholic liver disease (ALD) is the most prevalent type of chronic liver disease worldwide. ALD can progress from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which is characterized by hepatic inflammation. Chronic ASH can eventually lead to fibrosis and cirrhosis and in some cases hepatocellular cancer (HCC). In addition, severe ASH (with or without cirrhosis) can lead to alcoholic hepatitis, which is an acute clinical presentation of ALD that is associated with liver failure and high mortality. Most individuals consuming >40 g of alcohol per day develop AFL; however, only a subset of individuals will develop more advanced disease. Genetic, epigenetic and non-genetic factors might explain the considerable interindividual variation in ALD phenotype. The pathogenesis of ALD includes hepatic steatosis, oxidative stress, acetaldehyde-mediated toxicity and cytokine and chemokine-induced inflammation. Diagnosis of ALD involves assessing patients for alcohol use disorder and signs of advanced liver disease. The degree of AFL and liver fibrosis can be determined by ultrasonography, transient elastography, MRI, measurement of serum biomarkers and liver biopsy histology. Alcohol abstinence achieved by psychosomatic intervention is the best treatment for all stages of ALD. In the case of advanced disease such as cirrhosis or HCC, liver transplantation may be required. Thus, new therapies are urgently needed.
Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl
4
) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these myofibroblasts. Although some myofibroblasts apoptose, it is unknown whether other myofibroblasts may revert to an inactive phenotype during regression of fibrosis. We elucidated the fate of HSCs/myofibroblasts during recovery from CCl
4
- and alcohol-induced liver fibrosis using Cre-LoxP–based genetic labeling of myofibroblasts. Here we demonstrate that half of the myofibroblasts escape apoptosis during regression of liver fibrosis, down-regulate fibrogenic genes, and acquire a phenotype similar to, but distinct from, quiescent HSCs in their ability to more rapidly reactivate into myofibroblasts in response to fibrogenic stimuli and strongly contribute to liver fibrosis. Inactivation of HSCs was associated with up-regulation of the anti-apoptotic genes Hspa1a/b, which participate in the survival of HSCs in culture and in vivo.
Background & Aims-Myofibroblast transdifferentiation generates hepatic myofibroblasts, which promote liver fibrogenesis. The peroxisome proliferator-activated receptor (PPAR)γ is a negative regulator of this process. We investigated epigenetic regulation of PPARγ and myofibroblast transdifferentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.