CD44 is an adhesion molecule expressed in cancer stem-like cells. Here, we show that a CD44 variant (CD44v) interacts with xCT, a glutamate-cystine transporter, and controls the intracellular level of reduced glutathione (GSH). Human gastrointestinal cancer cells with a high level of CD44 expression showed an enhanced capacity for GSH synthesis and defense against reactive oxygen species (ROS). Ablation of CD44 induced loss of xCT from the cell surface and suppressed tumor growth in a transgenic mouse model of gastric cancer. It also induced activation of p38(MAPK), a downstream target of ROS, and expression of the gene for the cell cycle inhibitor p21(CIP1/WAF1). These findings establish a function for CD44v in regulation of ROS defense and tumor growth.
Chemokines are proteins which induce chemotaxis, promote differentiation of immune cells, and cause tissue extravasation. Given these properties, their role in anti-tumor immune response in the cancer environment is of great interest. Although immunotherapy has shown clinical benefit for some cancer patients, other patients do not respond. One of the mechanisms of resistance to checkpoint inhibitors may be chemokine signaling. The CXCL9, -10, -11/CXCR3 axis regulates immune cell migration, differentiation, and activation, leading to tumor suppression (paracrine axis). However, there are some reports that show involvements of this axis in tumor growth and metastasis (autocrine axis). Thus, a better understanding of CXCL9, -10, -11/CXCR3 axis is necessary to develop effective cancer control. In this article, we summarize recent evidence regarding CXCL9, CXCL10, CXCL11/CXCR3 axis in the immune system and discuss their potential role in cancer treatment.
SUMMARY Cirrhosis is a milieu that develops hepatocellular carcinoma (HCC), the second most lethal cancer worldwide. HCC prediction and prevention in cirrhosis are key unmet medical needs. Here we have established an HCC risk gene signature applicable to all major HCC etiologies: hepatitis B/C, alcohol, and non-alcoholic steatohepatitis. A transcriptome meta-analysis of >500 human cirrhotics revealed global regulatory gene modules driving HCC risk and lysophosphatidic acid pathway as a central chemoprevention target. Pharmacological inhibition of the pathway in vivo reduced tumors and reversed the gene signature, which was verified in organotypic ex vivo culture of patient-derived fibrotic liver tissues. These results demonstrate the utility of clinical organ transcriptome to enable a strategy, reverse-engineering precision cancer prevention.
Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy.
Objectives:Evidence suggests a possible role of Fusobacterium nucleatum in colorectal carcinogenesis, especially in right-sided proximal colorectum. Considering a change in bowel contents and microbiome from proximal to distal colorectal segments, we hypothesized that the proportion of colorectal carcinoma enriched with F. nucleatum might gradually increase along the bowel subsites from rectum to cecum.Methods:A retrospective, cross-sectional analysis was conducted on 1,102 colon and rectal carcinomas in molecular pathological epidemiology databases of the Nurses’ Health Study and the Health Professionals Follow-up Study. We measured the amount of F. nucleatum DNA in colorectal tumor tissue using a quantitative PCR assay and equally dichotomized F. nucleatum-positive cases (high vs. low). We used multivariable logistic regression analysis to examine the relationship of a bowel subsite variable (rectum, rectosigmoid junction, sigmoid colon, descending colon, splenic flexure, transverse colon, hepatic flexure, ascending colon, and cecum) with the amount of F. nucleatum.Results:The proportion of F. nucleatum-high colorectal cancers gradually increased from rectal cancers (2.5% 4/157) to cecal cancers (11% 19/178), with a statistically significant linear trend along all subsites (P<0.0001) and little evidence of non-linearity. The proportion of F. nucleatum-low cancers was higher in rectal, ascending colon, and cecal cancers than in cancers of middle segments.Conclusions:The proportion of F. nucleatum-high colorectal cancers gradually increases from rectum to cecum. Our data support the colorectal continuum model that reflects pathogenic influences of the gut microbiota on neoplastic and immune cells and challenges the prevailing two-colon (proximal vs. distal) dichotomy paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.